scholarly journals Analytical Solutions of Fuzzy Linear Differential Equations in the Conformable Setting

2021 ◽  
Vol 2 (2) ◽  
pp. 13-30
Author(s):  
Awais Younus ◽  
Muhammad Asif ◽  
Usama Atta ◽  
Tehmina Bashir ◽  
Thabet Abdeljawad

In this paper, we provide the generalization of two predefined concepts under the name fuzzy conformable differential equations. We solve the fuzzy conformable ordinary differential equations under the strongly generalized conformable derivative. For the order $\Psi$, we use two methods. The first technique is to resolve a fuzzy conformable differential equation into two systems of differential equations according to the two types of derivatives. The second method solves fuzzy conformable differential equations of order $\Psi$ by a variation of the constant formula. Moreover, we generalize our results to solve fuzzy conformable ordinary differential equations of a higher order. Further, we provide some examples in each section for the sake of demonstration of our results.

2014 ◽  
Vol 614 ◽  
pp. 409-412
Author(s):  
Lin Long Zhao

For Euler Equations L(y)=∑aixiy(i) =f(x)are Given Special Solution of a Direct Method, and a Special Coefficient Linear Differential Equations L(y)=∑aiy(i)=∑bjejx into Ordinary Differential Equations Euler.


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


Author(s):  
S. R. Grace

AbstractNew oscillation criteria are given for second order nonlinear ordinary differential equations with alternating coefficients. The results involve a condition obtained by Kamenev for linear differential equations. The obtained criterion for superlinear differential equations is a complement of the work established by Kwong and Wong, and Philos, for sublinear differential equations and by Yan for linear differential equations.


Filomat ◽  
2019 ◽  
Vol 33 (13) ◽  
pp. 4013-4020
Author(s):  
Jianren Long ◽  
Sangui Zeng

We investigate the [p,q]-order of growth of solutions of the following complex linear differential equation f(k)+Ak-1(z) f(k-1) + ...+ A1(z) f? + A0(z) f = 0, where Aj(z) are analytic in C? - {z0}, z0 ? C. Some estimations of [p,q]-order of growth of solutions of the equation are obtained, which is generalization of previous results from Fettouch-Hamouda.


Sign in / Sign up

Export Citation Format

Share Document