scholarly journals Non metrizable topologies on Z with countable dual group.

2017 ◽  
Vol 18 (1) ◽  
pp. 31
Author(s):  
Daniel De la Barrera Mayoral

In this paper we give two families of non-metrizable topologies on the group of the integers having a countable dual group which is isomorphic to a infinite torsion subgroup of the unit circle in the complex plane. Both families are related to D-sequences, which are sequences of natural numbers such that each term divides the following. The first family consists of locally quasi-convex group topologies. The second consists of complete topologies which are not locally quasi-convex. In order to study the dual groups for both families we need to make numerical considerations of independent interest.<br /><br />

2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


1996 ◽  
Vol 144 ◽  
pp. 179-182 ◽  
Author(s):  
Dahai Yu

Let T be the unit circle on the complex plane, H2(T) be the usual Hardy space on T, Tø be the Toeplitz operator with symbol Cowen showed that if f1 and f2 are functions in H such that is in Lø, then Tf is hyponormal if and only if for some constant c and some function g in H∞ with Using it, T. Nakazi and K. Takahashi showed that the symbol of hyponormal Toeplitz operator Tø satisfies and and they described the ø solving the functional equation above. Both of their conditions are hard to check, T. Nakazi and K. Takahashi remarked that even “the question about polynomials is still open” [2]. Kehe Zhu gave a computing process by way of Schur’s functions so that we can determine any given polynomial ø such that Tø is hyponormal [3]. Since no closed-form for the general Schur’s function is known, it is still valuable to find an explicit expression for the condition of a polynomial á such that Tø is hyponormal and depends only on the coefficients of ø, here we have one, it is elementary and relatively easy to check. We begin with the most general case and the following Lemma is essential.


2006 ◽  
Vol 93 (3) ◽  
pp. 545-569 ◽  
Author(s):  
IMRE LEADER ◽  
PAUL A. RUSSELL

Our aim in this paper is to prove Deuber's conjecture on sparse partition regularity, that for every $m$, $p$ and $c$ there exists a subset of the natural numbers whose $(m,p,c)$-sets have high girth and chromatic number. More precisely, we show that for any $m$, $p$, $c$, $k$ and $g$ there is a subset $S$ of the natural numbers that is sufficiently rich in $(m,p,c)$-sets that whenever $S$ is $k$-coloured there is a monochromatic $(m,p,c)$-set, yet is so sparse that its $(m,p,c)$-sets do not form any cycles of length less than $g$.Our main tools are some extensions of Nešetřil–Rödl amalgamation and a Ramsey theorem of Bergelson, Hindman and Leader. As a sideline, we obtain a Ramsey theorem for products of trees that may be of independent interest.


1966 ◽  
Vol 28 ◽  
pp. 187-191
Author(s):  
J. E. Mcmillan

Let D be the open unit disc, and let C be the unit circle in the complex plane. Let f be a (real-valued) function that is harmonic in D. A simple continuous curve β: z(t) (0≦t<1) contained in D such that |z(t)|→1 as t→1 is a boundary path with end (the bar denotes closure).


1969 ◽  
Vol 35 ◽  
pp. 151-157 ◽  
Author(s):  
V. I. Gavrilov

1. Let D be the open unit disk and r be the unit circle in the complex plane, and denote by Q the extended complex plane or the Rie-mann sphere.


2010 ◽  
Vol 06 (07) ◽  
pp. 1589-1607 ◽  
Author(s):  
LEANNE ROBERTSON

A number field is said to be monogenic if its ring of integers is a simple ring extension ℤ[α] of ℤ. It is a classical and usually difficult problem to determine whether a given number field is monogenic and, if it is, to find all numbers α that generate a power integral basis {1, α, α2, …, αk} for the ring. The nth cyclotomic field ℚ(ζn) is known to be monogenic for all n, and recently Ranieri proved that if n is coprime to 6, then up to integer translation all the integral generators for ℚ(ζn) lie on the unit circle or the line Re (z) = 1/2 in the complex plane. We prove that this geometric restriction extends to the cases n = 3k and n = 4k, where k is coprime to 6. We use this result to find all power integral bases for ℚ(ζn) for n = 15, 20, 21, 28. This leads us to a conjectural solution to the problem of finding all integral generators for cyclotomic fields.


Author(s):  
MATTHIAS GUNDLACH ◽  
ANDREI KHRENNIKOV ◽  
KARL-OLOF LINDAHL

Monomial mappings, x ↦ xn, are topologically transitive and ergodic with respect to Haar measure on the unit circle in the complex plane. In this paper we obtain an analogous result for monomial dynamical systems over p-adic numbers. The process is, however, not straightforward. The result will depend on the natural number n. Moreover, in the p-adic case we will not have ergodicity on the unit circle, but on the circles around the point 1.


1983 ◽  
Vol 48 (3) ◽  
pp. 662-669 ◽  
Author(s):  
Robert E. Byerly

It is known [4, Theorem 11-X(b)] that there is only one acceptable universal function up to recursive isomorphism. It follows from this that sets definable in terms of a universal function alone are specified uniquely up to recursive isomorphism. (An example is the set K, which consists of all n such that {n}(n) is defined, where λn, m{n}(m) is an acceptable universal function.) Many of the interesting sets constructed and studied by recursion theorists, however, have definitions which involve additional notions, such as a specific enumeration of the graph of a universal function. In particular, many of these definitions make use of the interplay between the purely number-theoretic properties of indices of partial recursive functions and their purely recursion-theoretic properties.This paper concerns r.e. sets that can be defined using only a universal function and some purely number-theoretic concepts. In particular, we would like to know when certain recursion-theoretic properties of r.e. sets definable in this way are independent of the particular choice of universal function (equivalently, independent of the particular way in which godel numbers are identified with natural numbers).We will first develop a suitable model-theoretic framework for discussing this question. This will enable us to classify the formulas defining r.e. sets by their logical complexity. (We use the number of alternations of quantifiers in the prenex form of a formula as a measure of logical complexity.) We will then be able to examine the question at each level.This work is an approach to the question of when the recursion-theoretic properties of an r.e. set are independent of the particular parameters used in its construction. As such, it does not apply directly to the construction techniques most commonly used at this time for defining particular r.e. sets, e.g., the priority method. A more direct attack on this question for these techniques is represented by such works as [3] and [5]. However, the present work should be of independent interest to the logician interested in recursion theory.


2013 ◽  
Vol 35 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
ANDREW D. BARWELL ◽  
JONATHAN MEDDAUGH ◽  
BRIAN E. RAINES

AbstractIn this paper we consider quadratic polynomials on the complex plane${f}_{c} (z)= {z}^{2} + c$and their associated Julia sets,${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an$n$-tupling. In this case${J}_{c} $contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that${f}_{c} : {J}_{c} \rightarrow {J}_{c} $has shadowing, and we classify all$\omega $-limit sets for these maps by showing that a closed set$R\subseteq {J}_{c} $is internally chain transitive if, and only if, there is some$z\in {J}_{c} $with$\omega (z)= R$.


Sign in / Sign up

Export Citation Format

Share Document