Fiber-reinforced Composite Substructure: Load-bearing Capacity of an Onlay Restoration and Flexural Properties of the Material

2006 ◽  
Vol 7 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Lippo V.J. Lassila ◽  
Pekka K. Vallittu ◽  
Sufyan K. Garoushi ◽  
Arzu Tezvergil

Abstract Aim The aim of this study was to determine the static load-bearing capacity of composite resin onlay restorations made of particulate filler composite (PFC) with two different types of fiber-reinforced composite (FRC) substructures. In addition, flexural properties of the material combination and the effect of polymerization devices were tested. Methods and Materials Specimens were prepared to simulate an onlay restoration, which consisted of 2 to 3 mm of FRC layer as a substructure (short random and continuous bidirectional fiber orientation) and a 1 mm surface layer of PFC. Control specimens were prepared from plain PFC. In Group A the specimens were incrementally polymerized only with a hand-light curing unit for 40 s, while in Group B the specimens were post-cured in a light-curing oven for 15 min before they were statically loaded with a steel ball. Bar-shaped test specimens were prepared to measure the flexural properties of material combination using a three-point bending test (ISO 10477). Results Analysis of variance (ANOVA) revealed all specimens with a FRC substructure have higher values of static load-bearing capacity and flexural properties than those obtained with plain PFC (p<0.001). Conclusion The load-bearing capacity of all the specimens decreased after post-curing and water storage. Restorations made from a material combination of FRC and PFC showed better mechanical properties than those obtained with plain PFC. Citation Garoushi SK, Lassila LVJ, Tezvergil A, Vallittu PK. Fiber-reinforced Composite Substructure: Loadbearing Capacity of an Onlay Restoration and Flexural Properties of the Material. J Contemp Dent Pract 2006 September;(7)4:001-008.

2011 ◽  
Vol 27 (6) ◽  
pp. e107-e115 ◽  
Author(s):  
Anna-Maria Le Bell-Rönnlöf ◽  
Lippo V.J. Lassila ◽  
Ilkka Kangasniemi ◽  
Pekka K. Vallittu

2006 ◽  
Vol 64 (5) ◽  
pp. 281-285 ◽  
Author(s):  
Sufyan K. Garoushi ◽  
Lippo V. J. Lassila ◽  
Pekka K. Vallittu

2007 ◽  
Vol 18 (10) ◽  
pp. 2025-2031 ◽  
Author(s):  
Ahmed Mansour Ballo ◽  
Lippo V. Lassila ◽  
Pekka K. Vallittu ◽  
Timo O. Närhi

2013 ◽  
Vol 7 (1) ◽  
pp. 181-185 ◽  
Author(s):  
Sufyan Garoushi ◽  
Enas Mangoush ◽  
Mangoush Vallittu ◽  
Lippo Lassila

Objectives: To determine the static load-bearing capacity of direct composite onlay restorations made of novel filling composite resin system which combines short fiber-reinforced composite resin (FC) and conventional particulate filler composite resin (PFC). Methods: Three groups of onlay restorations were fabricated (n = 8/group); Group A: made from conventional particulate filler composite resin (Z250, 3M-ESPE, USA, control), Group B: made from short fiber-reinforced composite resin (EverX posterior, StickTeck Ltd, member of GC group, Turku, Finland) as substructure with 1 mm surface layer of PFC, Group C: made from FC composite resin. The specimens were incrementally polymerized with a hand-light curing unit for 80 s before they were statically loaded with two different sizes (3 & 6 mm) of steel ball until fracture. Failure modes were visually examined. Data were analyzed using ANOVA (p = 0.05). Results: ANOVA revealed that onlay restorations made from FC composite resin had statistically significantly higher load-bearing capacity (1733 N) ( p < 0.05) than the control PFC composite resin (1081 N). Onlays made of FC composite resin with a surface layer of PFC gave force values of 1405 N which was statistically higher than control group ( p < 0.05). No statistically significant difference was found in the load-bearing capacity between groups loaded by different ball sizes Significance: Onlay restorations combining base of short fiber reinforced composite resin as substructure and surface layer of conventional composite resin displayed promising performance in high load bearing areas.


2004 ◽  
Vol 5 (2) ◽  
pp. 14-26 ◽  
Author(s):  
Lippo V.J. Lassila ◽  
Pekka K. Vallittu

Abstract The aim of this study was to investigate the influence of the position of the fiber rich layer on the flexural properties of fiber-reinforced composite (FRC) construction. In addition, the total residual monomer content of FRC was quantitatively determined to find out the difference of the effectiveness of two types of light-curing units using liquid chromatography (HPLC). Unidirectional continuous E-glass FRC and hybrid particulate filler composite resins were used in the fabrication of test specimens. Four different positions of the FRC layer were used: compression, neutral, tension, and vertical side position. A three-point bending test (ISO 10477) was performed to measure the flexural properties of the specimens. Position of the FRC layer had a significant effect on the flexural strength (p<0.001, ANOVA). Also, the type of light-curing device had an effect on flexural strength (p<0.001). Specimens with FRC positioned on the compression side showed flexural strength of approximately 250 MPa, whereas FRC positioned on the tension side showed strength ranging from 500 to 600 MPa. Mean flexural modulus with FRC placed horizontally ranged between 9-12 GPa; no significant difference was found between these groups. However when fiber reinforcement was positioned vertically, the flexural modulus raised up to 16 GPa. Specimens with 24 vol% glass fibers contained 52% less residual monomer than specimens without glass fibers. The monomer content was lower in specimens polymerized with the curing device with higher polymerization temperature. In order to optimize flexural strength of low fiber volume fraction, the fibers should be placed at the tension side of the specimen. Citation Lassila LVJ, Vallittu PK. The Effect of Fiber Position and Polymerization Condition on the Flexural Properties of Fiber-Reinforced Composite. J Contemp Dent Pract 2004 May;(5)2:014-026.


2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


Sign in / Sign up

Export Citation Format

Share Document