scholarly journals Efeitos agudos do alongamento estático passivo sobre a arquitetura muscular do vasto lateral de jovens saudáveis

Author(s):  
Eurico Peixoto César ◽  
Letícia De Oliveira Teixeira ◽  
Daniel Vieira Braña Côrtes de Souza ◽  
Paulo Sergio Chagas Gomes

The aim of the study was to investigate the acute effects of passive static stretching (PSS) on the fascicle length (FL) and fascicle angle (FA) of the vastus lateralis muscle (VL) in two different joint positions. Twelve physically active men (26.9 ± 7.5 years, 178.6 ± 7.0 cm, and 82.5 ± 16.8 kg) were placed in the prone position for the acquisition of ultrasound images (US) of VL, registered with extended and totally flexed knee up to the heel contact with the gluteus, before and after a PSS routine comprised of three 30-s repetitions maintained in the maximal discomfort position as reported by the participant. Results of the paired t-test indicated an increase in FL (16.2%; p = 0.012) and reduction in FA (15.5%; p = 0.003) in pre vs. post stretching comparisons for the extended knee position. There was also a significant increase in FL (34%; p = 0.0001) and reduction in FA (25%; p = 0.0007) when compared the extended knee vs. flexed knee positions. There were no significant differences in muscle architecture variables for the flexed knee position. The results showed high and moderate correlation of FL and FA for the extended (r = -0.89 and r = -0.74) and flexed knee (r = -0.76 and r = -0.78) position, pre and post stretching, respectively. It was concluded that the static stretching acutely affects the vastus lateralis muscle architecture only in the extended knee position, but not in the flexed knee position.

2017 ◽  
Vol 118 (2) ◽  
pp. 291-301 ◽  
Author(s):  
Robert Marzilger ◽  
Kirsten Legerlotz ◽  
Chrystalla Panteli ◽  
Sebastian Bohm ◽  
Adamantios Arampatzis

2021 ◽  
Vol 27 (6) ◽  
pp. 558-562
Author(s):  
Matheus Martins de Sousa ◽  
Conrado Torres Laett ◽  
Ubiratã Faleiro Gavilão ◽  
Rodrigo Araújo Goes ◽  
Carlos Gomes de Oliveira ◽  
...  

ABSTRACT Introduction: There has been little research on changes in rate of torque development (RTD) and muscle architecture. This study evaluated the effect of fatigue on RTD and muscle architecture of the vastus lateralis (VL). Methods: Seventeen volunteers (25.5 ± 6.2 years; 177.2 ± 12.9 cm; 76.4 ± 13.1 kg) underwent isokinetic knee extension assessment at 30°/s to obtain the peak torque (PT-ISK), before and after a set of intermittent maximal voluntary isometric contractions (MVIC) (15 reps – 3 s contraction, 3 s rest) used to promote muscle fatigue, monitored by the median frequency (MDF) of the electromyography from the VL, rectus femoris and vastus medialis muscles. Before and after the fatigue protocol, ultrasound images of the VL were obtained to measure muscle thickness (MT), fascicle length (FL), and fascicle angle (FA). The peak isometric torque (PT-ISM) and the RTDs in 50 ms windows were calculated for each MVIC. The RTDs were reported as absolute values and normalized by the PT-ISM. Results: Fatigue was confirmed due to significant reductions in MDF in all three muscles. After the fatigue protocol, the PT-ISK was reduced from 239.0±47.91 to 177.3±34.96 Nm, and the PT-MVIC was reduced from 269.5±45.63 to 220.49±46.94 Nm. All the RTD absolute values presented significant change after the fatigue protocol. However, the normalized RTD did not demonstrate any significant differences. No significant differences were found in the muscle architecture of the VL. Conclusions: The reduction in explosive strength occurred concomitantly with the reduction in maximum strength, as evidenced by the lack of changes in normalized TDT. Level of Evidence III.


2000 ◽  
Vol 88 (3) ◽  
pp. 851-856 ◽  
Author(s):  
Y. Ichinose ◽  
Y. Kawakami ◽  
M. Ito ◽  
H. Kanehisa ◽  
T. Fukunaga

To determine the shortening velocities of fascicles of the vastus lateralis muscle (VL) during isokinetic knee extension, six male subjects were requested to extend the knee with maximal effort at angular velocities of 30 and 150°/s. By using an ultrasonic apparatus, longitudinal images of the VL were produced every 30 ms during knee extension, and the fascicle length and angle of pennation were obtained from these images. The shortening fascicle length with extension of the knee (from 98 to 13° of knee angle; full extension = 0°) was greater (43 mm) at 30°/s than at 150°/s (35 mm). Even when the angular velocity remained constant during the isokinetic range of motion, the fascicle velocity was found to change from 39 to 77 mm/s at 150°/s and from 6 to 19 mm/s at 30°/s. The force exerted by a fascicle changed with the length of the fascicle at changing angular velocities. The peak values of fascicle force and velocity were observed at ∼90 mm of fascicle length. In conclusion, even if the angular velocity of knee extension is kept constant, the shortening velocity of a fascicle is dependent on the force applied to the muscle-tendon complex, and the phenomenon is considered to be caused mainly by the elongation of the elastic element (tendinous tissue).


2015 ◽  
Vol 21 (4) ◽  
pp. 428-435
Author(s):  
Guilherme Auler Brodt ◽  
Jeam Marcel Geremia ◽  
Mônica de Oliveira Melo ◽  
Marco Aurélio Vaz ◽  
Jefferson Fagundes Loss

Abstract The aim of this study was to compare the knee extension moment of older individuals with the muscle moment estimated through a biomechanical model. This was accomplished by using (1) the specific muscle architecture data of individuals, and (2) the generic muscle architecture available in the literature. The muscle force estimate was determined using a model with the muscle architecture from cadavers and the individual vastus lateralis muscle architecture of sixteen older volunteers. For the muscle moment comparison, all of the volunteers performed maximal voluntary isometric contractions (MVIC) in five different knee extension position angles. The architectural data was acquired using both resonance and ultrasound imaging. Both estimated muscle moments (generic and individual) were higher than the experimental. The architecture of the other vastii may be necessary to make the model more accurate for the older population. Although other factors inherent to ageing, such as co-contractions, fiber type percentage, and passive forces are not considered in the model, they could be responsible for the differences between moments in older people.


2003 ◽  
Vol 95 (6) ◽  
pp. 2328-2332 ◽  
Author(s):  
V. B. Schrauwen-Hinderling ◽  
L. J. C. van Loon ◽  
R. Koopman ◽  
K. Nicolay ◽  
W. H. M. Saris ◽  
...  

Intramyocellular lipid (IMCL) content has been reported to decrease after prolonged submaximal exercise in active muscle and, therefore, seems to form an important local substrate source. Because exercise leads to a substantial increase in plasma free fatty acid (FFA) availability with a concomitant increase in FFA uptake by muscle tissue, we aimed to investigate potential differences in the net changes in IMCL content between contracting and noncontracting skeletal muscle after prolonged endurance exercise. IMCL content was quantified by magnetic resonance spectroscopy in eight trained cyclists before and after a 3-h cycling protocol (55% maximal energy output) in the exercising vastus lateralis and the nonexercising biceps brachii muscle. Blood samples were taken before and after exercise to determine plasma FFA, glycerol, and triglyceride concentrations, and substrate oxidation was measured with indirect calorimetry. Prolonged endurance exercise resulted in a 20.4 ± 2.8% ( P < 0.001) decrease in IMCL content in the vastus lateralis muscle. In contrast, we observed a substantial (37.9 ± 9.7%; P < 0.01) increase in IMCL content in the less active biceps brachii muscle. Plasma FFA and glycerol concentrations were substantially increased after exercise (from 85 ± 6 to 1,450 ± 55 and 57 ± 11 to 474 ± 54 μM, respectively; P < 0.001), whereas plasma triglyceride concentrations were decreased (from 1,498 ± 39 to 703 ± 7 μM; P < 0.001). IMCL is an important substrate source during prolonged moderate-intensity exercise and is substantially decreased in the active vastus lateralis muscle. However, prolonged endurance exercise with its concomitant increase in plasma FFA concentration results in a net increase in IMCL content in less active muscle.


2017 ◽  
Vol 31 (1) ◽  
pp. 254-259 ◽  
Author(s):  
Gianluca Vernillo ◽  
Cesare Pisoni ◽  
Luca M. Sconfienza ◽  
Gabriele Thiébat ◽  
Stefano Longo

Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Zaras ◽  
Spyridon Methenitis ◽  
Gregory Bogdanis ◽  
Gerasimos Terzis

The aim of the study was to investigate the rate of force development (RFD) and muscle architecture early adaptations in response to training with fast- or slow-velocity eccentric squats. Eighteen young novice participants followed six weeks (two sessions/week) of either fast-velocity (Fast) or slow-velocity (Slow) squat eccentric-only training. Fast eccentric training consisted of nine sets of nine eccentric-only repetitions at 70% of 1-RM with <1 s duration for each repetition. Slow eccentric training consisted of five sets of six eccentric-only repetitions at 90% of 1-RM with ~4 sec duration for each repetition. Before and after training, squat 1-RM, countermovement jump (CMJ), isometric leg press RFD, and vastus lateralis muscle architecture were evaluated. Squat 1-RM increased by 14.5 ± 7.0% (Fast, p < 0.01) and by 5.4 ± 5.1% (Slow, p < 0.05). RFD and fascicle length increased significantly in the Fast group by 10–19% and 10.0 ± 6.2%, p < 0.01, respectively. Muscle thickness increased only in the Slow group (6.0 ± 6.8%, p < 0.05). Significant correlations were found between the training induced changes in fascicle length and RFD. These results suggest that fast eccentric resistance training may be more appropriate for increases in rapid force production compared to slow eccentric resistance training, and this may be partly due to increases in muscle fascicle length induced by fast eccentric training.


Sign in / Sign up

Export Citation Format

Share Document