scholarly journals Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist

2011 ◽  
Vol 41 (1) ◽  
pp. 17 ◽  
Author(s):  
Taegun Seo ◽  
Seho Cha ◽  
Kyung Mi Woo ◽  
Yun-Soo Park ◽  
Yun-Mi Cho ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Lygia S. Nogueira ◽  
Carolina P. Vasconcelos ◽  
Geovanni Pereira Mitre ◽  
Maria Sueli da Silva Kataoka ◽  
Marcelo O. Lima ◽  
...  

Human exposure to mercury (Hg) is primary associated with its organic form, methylmercury (MeHg), through the ingestion of contaminated seafood. However, Hg contamination is also positively correlated with the number of dental restorations, total surface of amalgam, and organic mercury concentration in the saliva. Among the cells existing in the oral cavity, human periodontal ligament fibroblast (hPLF) cells are important cells responsible for the production of matrix and extracellular collagen, besides sustentation, renewal, repair, and tissue regeneration. In this way, the present study is aimed at investigating the potential oxidative effects caused by MeHg on hPLF. Firstly, we analyzed the cytotoxic effects of MeHg (general metabolism status, cell viability, and mercury accumulation) followed by the parameters related to oxidative stress (total antioxidant capacity, GSH levels, and DNA damage). Our results demonstrated that MeHg toxicity increased in accordance with the rise of MeHg concentration in the exposure solutions (1-7 μM) causing 100% of cell death at 7 μM MeHg exposure. The general metabolism status was firstly affected by 2 μM MeHg exposure (43.8±1.7%), while a significant decrease of cell viability has arisen significantly only at 3 μM MeHg exposure (68.7±1.4%). The ratio among these two analyses (named fold change) demonstrated viable hPLF with compromised cellular machinery along with the range of MeHg exposure. Subsequently, two distinct MeHg concentrations (0.3 and 3 μM) were chosen based on LC50 value (4.2 μM). hPLF exposed to these two MeHg concentrations showed an intracellular Hg accumulation as a linear-type saturation curve indicating that metal accumulated diffusively in the cells, typical for metal organic forms such as methyl. The levels of total GSH decreased 50% at exposure to 3 μM MeHg when compared to control. Finally, no alteration in the DNA integrity was observed at 0.3 μM MeHg exposure, but 3 μM MeHg caused significant damage. In conclusion, it was observed that MeHg exposure affected the general metabolism status of hPLF with no necessary decrease on the cell death. Additionally, although the oxidative imbalance in the hPLF was confirmed only at 3 μM MeHg through the increase of total GSH level and DNA damage, the lower concentration of MeHg used (0.3 μM) requires attention since the intracellular mercury accumulation may be toxic at chronic exposures.


2010 ◽  
Vol 26 (6) ◽  
pp. 481-483 ◽  
Author(s):  
Beatriz Dulcineia Mendes De Souza ◽  
Eduardo Antunes Bortoluzzi ◽  
Cleonice Da Silveira Teixeira ◽  
Wilson Tadeu Felippe ◽  
Cláudia Maria Oliveira Simões ◽  
...  

2015 ◽  
Vol 39 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Miho Song ◽  
Hwan Yeul Yu ◽  
Ji-Youn Chun ◽  
Dong-Myung Shin ◽  
Soo Hyun Song ◽  
...  

2013 ◽  
Vol 31 (4) ◽  
pp. 130-138 ◽  
Author(s):  
Kamedh Yashwant Chowdhary ◽  
Joann Pauline George ◽  
Purushothama Gowda ◽  
Jyothsana A. Rao

Neuroscience ◽  
2009 ◽  
Vol 158 (2) ◽  
pp. 705-712 ◽  
Author(s):  
R.S. Ehrlichman ◽  
M.J. Gandal ◽  
C.R. Maxwell ◽  
M.T. Lazarewicz ◽  
L.H. Finkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document