scholarly journals Ozone distributions and urban air quality during summer in Agra – a world heritage site

2014 ◽  
Vol 5 (4) ◽  
pp. 796-804 ◽  
Author(s):  
Renuka Saini ◽  
Pradyumn Singh ◽  
Brij B. Awasthi ◽  
Krishan Kumar ◽  
Ajay Taneja
2016 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala S. Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

Abstract. Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of three months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The ranges of hourly average concentrations were: PM10: 10.5–604.0 µg m−3, PM2.5: 6.1–272.2 µg m−3; BC: 0.3–30.0 µg m−3; CO: 125.0–1430.0 ppbv; and O3: 1.0–118.1 ppbv. These levels are comparable to other very heavily polluted sites throughout South Asia. The 24-h average PM2.5 and PM10 concentrations exceeded the WHO guideline very frequently (94 % and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants. The model was able to reproduce the variation in the pollutant concentrations well; however, estimated values were 1.5 to 5 times lower than the observed concentrations for CO and PM10 respectively. Regionally tagged CO tracers showed the majority of CO came from the upwind region of Ganges valley. The model was also used to examine the chemical composition of the aerosol mixture, indicating that organic carbon was the main constituent of fine mode PM2.5, followed by mineral dust. Given the high pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.


2017 ◽  
Vol 17 (18) ◽  
pp. 11041-11063 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala Siva Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

Abstract. Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of 3 months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The main objective of this work is to understand and document the level of air pollution, diurnal characteristics and influence of open burning on air quality in Lumbini. The hourly average concentrations during the entire measurement campaign ranged as follows: BC was 0.3–30.0 µg m−3, PM1 was 3.6–197.6 µg m−3, PM2. 5 was 6.1–272.2 µg m−3, PM10 was 10.5–604.0 µg m−3, O3 was 1.0–118.1 ppbv and CO was 125.0–1430.0 ppbv. These levels are comparable to other very heavily polluted sites in South Asia. Higher fraction of coarse-mode PM was found as compared to other nearby sites in the Indo-Gangetic Plain region. The ΔBC ∕ ΔCO ratio obtained in Lumbini indicated considerable contributions of emissions from both residential and transportation sectors. The 24 h average PM2. 5 and PM10 concentrations exceeded the WHO guideline very frequently (94 and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants to understand the pollutant transport pathways. The model estimated values were ∼ 1. 5 to 5 times lower than the observed concentrations for CO and PM10, respectively. Model-simulated regionally tagged CO tracers showed that the majority of CO came from the upwind region of Ganges Valley. Model performance needs significant improvement in simulating aerosols in the region. Given the high air pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.


2016 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala S. Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

2015 ◽  
Vol 20 (6) ◽  
pp. 599-608 ◽  
Author(s):  
Sunil Gulia ◽  
Akarsh Shrivastava ◽  
A. K. Nema ◽  
Mukesh Khare

Author(s):  
Lisa-Marie Shillito ◽  
Anil Namdeo ◽  
Aishwarya Vikram Bapat ◽  
Helen Mackay ◽  
Scott D. Haddow

AbstractThe use of wood, dung and other biomass fuels can be traced back to early prehistory. While the study of prehistoric fuel use and its environmental impacts is well established, there has been little investigation of the health impacts this would have had, particularly in the Neolithic period, when people went from living in relatively small groups, to living in dense settlements. The UNESCO World Heritage Site of Çatalhöyük, Turkey, is one of the earliest large ‘pre-urban’ settlements in the world. In 2017, a series of experiments were conducted to measure fine particulate (PM2.5) concentrations during typical fuel burning activities, using wood and dung fuel. The results indicate that emissions from both fuels surpassed the WHO and EU standard limits for indoor air quality, with dung fuel being the highest contributor for PM2.5 pollution inside the house, producing maximum values > 150,000 µg m−3. Maximum levels from wood burning were 36,000 µg m−3. Average values over a 2–3 h period were 13–60,000 µg m−3 for dung and 10–45,000 µg m−3 for wood. The structure of the house, lack of ventilation and design of the oven and hearth influenced the air quality inside the house. These observations have implications for understanding the relationship between health and the built environment in the past.


2018 ◽  
Vol 16 (5) ◽  
Author(s):  
Rohayah Che Amat

This research presents the value of historic urban landscape (HUL) elements in influencing the character of George Town UNESCO World Heritage Site (WHS), Penang, Malaysia. The values were perceived by the local community of different social-cultural groups that occupied the study area. The historic urban landscape elements constitute towards the protection of its townscape. The identification of the heritage elements influenced by the community interaction with their environment. This study also helps to define the character of a place, as well as reflecting its historical significance. The study adopted four techniques to gather both qualitative and quantitative data, including questionnaire survey, in-depth interview, visual survey and content analysis. In general, the local community has the capability in valuing the historic urban landscape values. The outcomes of their perceptions became the statement of the historic urban landscape values, which are expected to lead to the development of the areas. The community evaluation and perception can be expanded in implementing any development of the historic urban area by the authority.


Sign in / Sign up

Export Citation Format

Share Document