scholarly journals A Novel Technique for Generation of Test Cases based on Bee Colony Optimization and Modified Genetic Algorithm (BCOmGA)

2013 ◽  
Vol 68 (19) ◽  
pp. 12-16 ◽  
Author(s):  
Sandeep Dalal ◽  
Rajender Singh Chhillar
2022 ◽  
pp. 1043-1058
Author(s):  
Rashmi Rekha Sahoo ◽  
Mitrabinda Ray

The primary objective of software testing is to locate bugs as many as possible in software by using an optimum set of test cases. Optimum set of test cases are obtained by selection procedure which can be viewed as an optimization problem. So metaheuristic optimizing (searching) techniques have been immensely used to automate software testing task. The application of metaheuristic searching techniques in software testing is termed as Search Based Testing. Non-redundant, reliable and optimized test cases can be generated by the search based testing with less effort and time. This article presents a systematic review on several meta heuristic techniques like Genetic Algorithms, Particle Swarm optimization, Ant Colony Optimization, Bee Colony optimization, Cuckoo Searches, Tabu Searches and some modified version of these algorithms used for test case generation. The authors also provide one framework, showing the advantages, limitations and future scope or gap of these research works which will help in further research on these works.


2018 ◽  
Vol 11 (1) ◽  
pp. 158-171 ◽  
Author(s):  
Rashmi Rekha Sahoo ◽  
Mitrabinda Ray

The primary objective of software testing is to locate bugs as many as possible in software by using an optimum set of test cases. Optimum set of test cases are obtained by selection procedure which can be viewed as an optimization problem. So metaheuristic optimizing (searching) techniques have been immensely used to automate software testing task. The application of metaheuristic searching techniques in software testing is termed as Search Based Testing. Non-redundant, reliable and optimized test cases can be generated by the search based testing with less effort and time. This article presents a systematic review on several meta heuristic techniques like Genetic Algorithms, Particle Swarm optimization, Ant Colony Optimization, Bee Colony optimization, Cuckoo Searches, Tabu Searches and some modified version of these algorithms used for test case generation. The authors also provide one framework, showing the advantages, limitations and future scope or gap of these research works which will help in further research on these works.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


1996 ◽  
Vol 104 (7) ◽  
pp. 2684-2691 ◽  
Author(s):  
Susan K. Gregurick ◽  
Millard H. Alexander ◽  
Bernd Hartke

Sign in / Sign up

Export Citation Format

Share Document