scholarly journals A Simplified Particle Swarm Optimization for Job Scheduling in Cloud Computing

2017 ◽  
Vol 163 (9) ◽  
pp. 34-41 ◽  
Author(s):  
Ibrahim Attiya ◽  
Xiaotong Zhang
2013 ◽  
Vol 662 ◽  
pp. 957-960 ◽  
Author(s):  
Jing Liu ◽  
Xing Guo Luo ◽  
Xing Ming Zhang ◽  
Fan Zhang

Cloud computing is an emerging high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. The performance of the scheduling system influences the cost benefit of this computing paradigm. To reduce the energy consumption and improve the profit, a job scheduling model based on the particle swarm optimization(PSO) algorithm is established for cloud computing. Based on open source cloud computing simulation platform CloudSim, compared to GA and random scheduling algorithms, the results show that the proposed algorithm can obtain a better solution concerning the energy cost and profit.


Mobile Cloud Computing is an accumulation of both Cloud Computing and Mobile Computing. In cloud computing resources are deployed to a client on-demand basis. Mobile cloud computing is similar to cloud computing except that some devices involved in mobile cloud computing should be mobile. The demand for MCC has been increasing due to its scalability, reliability, high QOS (Quality Of Services), longer battery life, large storage capacity. Mobile cloud computing aims to take benefit of limited resources provided by a cloud provider. Task scheduling is a major concept involved in executing a task. In cloud computing job scheduling is required to execute each job without any deadlock. But the scheduling of dependent tasks is a problem in cloud systems. This problem is an NP-complete problem and can be solved using various heuristic and metaheuristic approaches. These approaches give high-quality solutions with reasonable execution time. Particle Swarm Optimization (PSO) is one of these meta-heuristic approaches that solve the problem of grid scheduling. In this paper, we address the problem encounter in dynamic scheduling. In dynamic scheduling, each task has its own deadline completion time. The task that arrived earlier in the system occupied the resources first and later arrived tasks are rejected because their execution time exceeds the deadline. In this paper, we proposed PSO with a variable job identifier that identifies independent and dependent tasks from the population. The particles are arranged with a grid dynamically and influence swarm to minimize execution time and waiting time simultaneously. The experimental studies show that the proposed approach is more efficient than other PSO based approaches as described in the literature


Sign in / Sign up

Export Citation Format

Share Document