Comparative Analysis of Drift Detection Based Adaptive Ensemble Model with Different Drift Detection Techniques

2021 ◽  
Vol 23 (06) ◽  
pp. 49-55
Author(s):  
Sanjeev Kumar ◽  
◽  
Ravendra Singh ◽  

Stream data mining is a popular research area these days. The concept drift detection and drift handling are the biggest challenges of stream data mining. Several drift detection algorithms have been developed which can accurately detect various drifts but have the problem of false-positive drift detection. The false-positive drift detection leads to the performance degradation of the classifier because of unnecessary training in between analyses. Classifier ensemble has shown its efficiency for drift detection, drift handling, and classification. But the ensemble classifiers could not detect the exact position of drift occurrence, so it has to update itself at some fixed interval, which leads to an unnecessary computational burden on the system. Combining the drift detection algorithm with an ensemble classifier can improve the performance and also solve the problems of false-positive drift detection and unnecessary updating of the ensemble classifier. In this paper, a model is proposed that creates a weighted adaptive ensemble classifier by updating it only when a drift detection signal is given by the used drift detection method. The proposed model is evaluated on text-based stream data for sentiment analysis and opinion mining with multiple drift detection algorithms and with multiple classification algorithms as base classifiers for the ensemble. A comparative analysis has been done, and the results have shown the efficiency of the proposed models.

2021 ◽  
Vol 7 ◽  
pp. e660
Author(s):  
Sanjeev Kumar ◽  
Ravendra Singh ◽  
Mohammad Zubair Khan ◽  
Abdulfattah Noorwali

DataStream mining is a challenging task for researchers because of the change in data distribution during classification, known as concept drift. Drift detection algorithms emphasize detecting the drift. The drift detection algorithm needs to be very sensitive to change in data distribution for detecting the maximum number of drifts in the data stream. But highly sensitive drift detectors lead to higher false-positive drift detections. This paper proposed a Drift Detection-based Adaptive Ensemble classifier for sentiment analysis and opinion mining, which uses these false-positive drift detections to benefit and minimize the negative impact of false-positive drift detection signals. The proposed method creates and adds a new classifier to the ensemble whenever a drift happens. A weighting mechanism is implemented, which provides weights to each classifier in the ensemble. The weight of the classifier decides the contribution of each classifier in the final classification results. The experiments are performed using different classification algorithms, and results are evaluated on the accuracy, precision, recall, and F1-measures. The proposed method is also compared with these state-of-the-art methods, OzaBaggingADWINClassifier, Accuracy Weighted Ensemble, Additive Expert Ensemble, Streaming Random Patches, and Adaptive Random Forest Classifier. The results show that the proposed method handles both true positive and false positive drifts efficiently.


2021 ◽  
Vol 9 (2) ◽  
pp. 36-52
Author(s):  
Mashaal A. Alfhaid ◽  
Manal Abdullah

As the number of generated data increases every day, this has brought the importance of data mining and knowledge extraction. In traditional data mining, offline status can be used for knowledge extraction. Nevertheless, dealing with stream data mining is different due to continuously arriving data that can be processed at a single scan besides the appearance of concept drift. As the pre-processing stage is critical in knowledge extraction, imbalanced stream data gain significant popularity in the last few years among researchers. Many real-world applications suffer from class imbalance including medical, business, fraud detection and etc. Learning from the supervised model includes classes whether it is binary- or multi-classes. These classes are often imbalance where it is divided into the majority (negative) class and minority (positive) class, which can cause a bias toward the majority class that leads to skew in predictive performance models. Handles imbalance streaming data is mandatory for more accurate and reliable learning models. In this paper, we will present an overview of data stream mining and its tools. Besides, summarize the problem of class imbalance and its different approaches. In addition, researchers will present the popular evaluation metrics and challenges prone from imbalanced streaming data.


Author(s):  
Manmohan Singh ◽  
Rajendra Pamula ◽  
Alok Kumar

There are various applications of clustering in the fields of machine learning, data mining, data compression along with pattern recognition. The existent techniques like the Llyods algorithm (sometimes called k-means) were affected by the issue of the algorithm which converges to a local optimum along with no approximation guarantee. For overcoming these shortcomings, an efficient k-means clustering approach is offered by this paper for stream data mining. Coreset is a popular and fundamental concept for k-means clustering in stream data. In each step, reduction determines a coreset of inputs, and represents the error, where P represents number of input points according to nested property of coreset. Hence, a bit reduction in error of final coreset gets n times more accurate. Therefore, this motivated the author to propose a new coreset-reduction algorithm. The proposed algorithm executed on the Covertype dataset, Spambase dataset, Census 1990 dataset, Bigcross dataset, and Tower dataset. Our algorithm outperforms with competitive algorithms like Streamkm[Formula: see text], BICO (BIRCH meets Coresets for k-means clustering), and BIRCH (Balance Iterative Reducing and Clustering using Hierarchies.


2020 ◽  
Vol 106 ◽  
pp. 672-684 ◽  
Author(s):  
José Maia ◽  
Carlos Alberto Severiano ◽  
Frederico Gadelha Guimarães ◽  
Cristiano Leite de Castro ◽  
André Paim Lemos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document