scholarly journals Comparative Analysis of PI controller, Fuzzy controller and Interval Type-2 Fuzzy based Performance of Dynamic Voltage Restorer for Compensation of Voltage Sag and Swell

2021 ◽  
Vol 23 (07) ◽  
pp. 550-557
Author(s):  
Bharti Thakur ◽  
◽  
Dr. Archana Rani ◽  

In today’s scenario, the power quality issues like voltage sag and swell are major concerns in power systems. On the distribution, side to overcome this issue a custom power device DVR(Dynamic Voltage Restorer) is proven to be a more effective solution that is lower in cost, smaller in size, and offers a faster dynamic response for the protection of sensitive load. DVR is a series compensating device which operates as a voltage booster. The application of DVR is entitled to be a flawless compensating device for the compensation of voltage sag and swell. This paper presents the modeling and simulation using various controller topologies like PI controller based on synchronous reference frame algorithm, fuzzy controller, and interval type 2 fuzzy controller. The results are then verified using a Matlab-Simulink environment.

2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
C. Gopinath ◽  
C. Yaashuwanth ◽  
R. Ramesh ◽  
J. R. Maglin ◽  
T. Ajith Bosco Raj

Voltage sag and swell have a major concern in the distribution systems. In order to mitigate the voltage sag and swell, a custom power device called dynamic voltage restorer (DVR) is used. The proposed system is a polymer electrolyte membrane (PEM) fuel cell based DVR. The energy from the fuel cell is stored in the super capacitor to restitute the voltage. In this proposed DVR, Z-source inverter is used instead of traditional inverter because of buck-boost and shoot through capability. The simulation is performed using three controller topologies: PI controller, synchronous reference frame controller and fuzzy controller and the results are verified using Matlab-Simulink environment.


Author(s):  
Rajesh Damaraju ◽  
S.V.N.L. Lalitha

<p>Non linear loads are highly effected by variations in voltages. Dynamic voltage restorer is one of the most popular compensating devices due to its low cost and better performance. Usage of Park’s transformation technique effectively reduces the rating of Dynamic voltage restorer. Application of fuzzy logic controller for getting the better result is proposed in this paper. The results are verified in Matlab/Simulink environment.</p>


Author(s):  
Tamilvanan G. ◽  
Mahendran S.

<p>The maintain power quality is one of the major part of all kind of industry as well as power systems. Voltage sag and voltage swell the common power quality issue. The Dynamic Voltage Restorer is the common Device which is used to mitigate the above problems. In this paper provides review on various type of AC-AC converter based DVR. The use of AC-AC converter can compensate the voltage sag and swell without need of any kind of storage elements like capacitor and batteries. The absence of storage elements can reduce size and weight of the DVR. The feature various type of AC- AC converters based DVR is concentrated in this paper.</p>


Author(s):  
ABRARKHAN I. PATHAN ◽  
PROF. S. S. VANAMANE

This paper presents a control technique using Synchronous Reference Frame (SRF) theory to compensate the voltage sag/swell by using Dynamic Voltage Restorer (DVR). DVR is the best known device for mitigation of voltage sag/swell occurred in the system. Nowadays voltage sag is the most common problem customers are facing repeatedly. There is a need for instant mitigation of voltage sag/swell and maintains the load voltage constant. Some simulations are performed in MATLAB/Simulink and results are discussed to validate this theory for instant calculation of reference voltage and quick mitigation of voltage sag or swell from the system.


The integration of renewable energy sources, smart grid systems and extensive usage of power electronic devices, micro-controlled based device, variable speed drives etc. causes a number of power quality issues including electrical harmonics, voltage sag, voltage swell and imbalance creates an impact on the efficiency of electrical equipment. the energy maintaining poor power quality will affect consumers and their utility equipment’s. Power quality means quality of the normal voltage supplied to your facility. Voltage provided should be as close as possible to nominal voltage. The waveform must be pure sine wave free from any harmonics and other disturbances. The growing use of microprocessors and electronic equipment has made us to focus on power quality. Equipment and machinery can be damaged or even fail when subjected to power anomalies. Some of the power quality issues are voltage sag, swell, harmonics, flicker, interruption etc. Among these issues voltage sag is an important issue. This paper investigates about the causes of voltage sag, consequences and its mitigation. Many mitigation devices are available and the most economic effective solution is Dynamic Voltage Restorer (DVR). Simulation has been carried out to evaluate performance. A DVR is simulated in MATLAB/SIMULINK using synchronous reference frame theory.


2015 ◽  
Vol 15 (3) ◽  
pp. 407
Author(s):  
Rajesh Damaraju ◽  
S.V.N.L. Lalitha

<p>Non linear loads are highly effected by variations in voltages. Dynamic voltage restorer is one of the most popular compensating devices due to its low cost and better performance. Usage of Park’s transformation technique effectively reduces the rating of Dynamic voltage restorer. Application of fuzzy logic controller for getting the better result is proposed in this paper. The results are verified in Matlab/Simulink environment.</p>


Sign in / Sign up

Export Citation Format

Share Document