scholarly journals Vehicle Recognition Using VIBE and SVM

2016 ◽  
Vol 6 (4) ◽  
pp. 21-29
Author(s):  
Jinlin Liu ◽  
Qiang Chen ◽  
Chen Zhang
Keyword(s):  
Author(s):  
Chaoqing Wang ◽  
Junlong Cheng ◽  
Yuefei Wang ◽  
Yurong Qian

A vehicle make and model recognition (VMMR) system is a common requirement in the field of intelligent transportation systems (ITS). However, it is a challenging task because of the subtle differences between vehicle categories. In this paper, we propose a hierarchical scheme for VMMR. Specifically, the scheme consists of (1) a feature extraction framework called weighted mask hierarchical bilinear pooling (WMHBP) based on hierarchical bilinear pooling (HBP) which weakens the influence of invalid background regions by generating a weighted mask while extracting features from discriminative regions to form a more robust feature descriptor; (2) a hierarchical loss function that can learn the appearance differences between vehicle brands, and enhance vehicle recognition accuracy; (3) collection of vehicle images from the Internet and classification of images with hierarchical labels to augment data for solving the problem of insufficient data and low picture resolution and improving the model’s generalization ability and robustness. We evaluate the proposed framework for accuracy and real-time performance and the experiment results indicate a recognition accuracy of 95.1% and an FPS (frames per second) of 107 for the framework for the Stanford Cars public dataset, which demonstrates the superiority of the method and its availability for ITS.


Author(s):  
Radu-Petru Fotescu ◽  
Loredana-Maria Burciu ◽  
Paul Svasta ◽  
Rodica Constantinescu

2021 ◽  
Vol 54 (4) ◽  
pp. 1-37
Author(s):  
Azzedine Boukerche ◽  
Xiren Ma

Vision-based Automated Vehicle Recognition (VAVR) has attracted considerable attention recently. Particularly given the reliance on emerging deep learning methods, which have powerful feature extraction and pattern learning abilities, vehicle recognition has made significant progress. VAVR is an essential part of Intelligent Transportation Systems. The VAVR system can fast and accurately locate a target vehicle, which significantly helps improve regional security. A comprehensive VAVR system contains three components: Vehicle Detection (VD), Vehicle Make and Model Recognition (VMMR), and Vehicle Re-identification (VRe-ID). These components perform coarse-to-fine recognition tasks in three steps. In this article, we conduct a thorough review and comparison of the state-of-the-art deep learning--based models proposed for VAVR. We present a detailed introduction to different vehicle recognition datasets used for a comprehensive evaluation of the proposed models. We also critically discuss the major challenges and future research trends involved in each task. Finally, we summarize the characteristics of the methods for each task. Our comprehensive model analysis will help researchers that are interested in VD, VMMR, and VRe-ID and provide them with possible directions to solve current challenges and further improve the performance and robustness of models.


2013 ◽  
Vol 694-697 ◽  
pp. 1987-1992 ◽  
Author(s):  
Xing Gang Wu ◽  
Cong Guo

Proposed an approach to identify vehicles considering the variation in image size, illumination, and view angles under different cameras using Support Vector Machine with weighted random trees (WRT-SVM). With quantizing the scale-invariant features of image pairs by the weighted random trees, the identification problem is formulated as a same-different classification problem. Results show the efficiency of building the randomized tree due to the weights of the samples and the control of the false-positive rate of the identify system.


2016 ◽  
Vol 215 ◽  
pp. 212-216 ◽  
Author(s):  
Guang-yu Zhu ◽  
Chen-guang Yang ◽  
Peng Zhang

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 364 ◽  
Author(s):  
Hao Wu ◽  
Bo Pang ◽  
Dahai Dai ◽  
Jiani Wu ◽  
Xuesong Wang

Unmanned aerial vehicles (UAV) have become vital targets in civilian and military fields. However, the polarization characteristics are rarely studied. This paper studies the polarization property of UAVs via the fusion of three polarimetric decomposition methods. A novel algorithm is presented to classify and recognize UAVs automatically which includes a clustering method proposed in “Science”, one of the top journals in academia. Firstly, the selection of the imaging algorithm ensures the quality of the radar images. Secondly, local geometrical structures of UAVs can be extracted based on Pauli, Krogager, and Cameron polarimetric decomposition. Finally, the proposed algorithm with clustering by fast search and find of density peaks (CFSFDP) has been demonstrated to be better than the original methods under the various noise conditions with the fusion of three polarimetric decomposition methods.


Sign in / Sign up

Export Citation Format

Share Document