scholarly journals Evaluation of Single-Span Models on Extractive Multi-Span Question-Answering

2021 ◽  
Vol 12 (1) ◽  
pp. 19-29
Author(s):  
Marie-Anne Xu ◽  
Rahul Khanna

Machine Reading Comprehension (MRC), particularly extractive close-domain question-answering, is a prominent field in Natural Language Processing (NLP). Given a question and a passage or set of passages, a machine must be able to extract the appropriate answer from the passage(s). However, the majority of these existing questions have only one answer, and more substantial testing on questions with multiple answers, or multi-span questions, has not yet been applied. Thus, we introduce a newly compiled dataset consisting of questions with multiple answers that originate from previously existing datasets. In addition, we run BERT-based models pre-trained for question-answering on our constructed dataset to evaluate their reading comprehension abilities. Runtime of base models on the entire dataset is approximately one day while the runtime for all models on a third of the dataset is a little over two days. Among the three of BERT-based models we ran, RoBERTa exhibits the highest consistent performance, regardless of size. We find that all our models perform similarly on this new, multi-span dataset compared to the single-span source datasets. While the models tested on the source datasets were slightly fine-tuned in order to return multiple answers, performance is similar enough to judge that task formulation does not drastically affect question-answering abilities. Our evaluations indicate that these models are indeed capable of adjusting to answer questions that require multiple answers. We hope that our findings will assist future development in question-answering and improve existing question-answering products and methods.

2021 ◽  
Vol 1955 (1) ◽  
pp. 012072
Author(s):  
Ruiheng Li ◽  
Xuan Zhang ◽  
Chengdong Li ◽  
Zhongju Zheng ◽  
Zihang Zhou ◽  
...  

2020 ◽  
Author(s):  
Marie-Anne Xu ◽  
Rahul Khanna

Recent progress in machine reading comprehension and question-answering has allowed machines to reach and even surpass human question-answering. However, the majority of these questions have only one answer, and more substantial testing on questions with multiple answers, or multi-span questions, has not yet been applied. Thus, we introduce a newly compiled dataset consisting of questions with multiple answers that originate from previously existing datasets. In addition, we run BERT-based models pre-trained for question-answering on our constructed dataset to evaluate their reading comprehension abilities. Among the three of BERT-based models we ran, RoBERTa exhibits the highest consistent performance, regardless of size. We find that all our models perform similarly on this new, multi-span dataset (21.492% F1) compared to the single-span source datasets (~33.36% F1). While the models tested on the source datasets were slightly fine-tuned, performance is similar enough to judge that task formulation does not drastically affect question-answering abilities. Our evaluations indicate that these models are indeed capable of adjusting to answer questions that require multiple answers. We hope that our findings will assist future development in questionanswering and improve existing question-answering products and methods.


2020 ◽  
Vol 34 (10) ◽  
pp. 13901-13902
Author(s):  
Xingkai Ren ◽  
Ronghua Shi ◽  
Fangfang Li

Recently, unsupervised representation learning has been extremely successful in the field of natural language processing. More and more pre-trained language models are proposed and achieved the most advanced results especially in machine reading comprehension. However, these proposed pre-trained language models are huge with hundreds of millions of parameters that have to be trained. It is quite time consuming to use them in actual industry. Thus we propose a method that employ a distillation traditional reading comprehension model to simplify the pre-trained language model so that the distillation model has faster reasoning speed and higher inference accuracy in the field of machine reading comprehension. We evaluate our proposed method on the Chinese machine reading comprehension dataset CMRC2018 and greatly improve the accuracy of the original model. To the best of our knowledge, we are the first to propose a method that employ the distillation pre-trained language model in Chinese machine reading comprehension.


Poetics ◽  
1990 ◽  
Vol 19 (1-2) ◽  
pp. 99-120
Author(s):  
Stefan Wermter ◽  
Wendy G. Lehnert

2020 ◽  
Vol 34 (05) ◽  
pp. 8504-8511
Author(s):  
Arindam Mitra ◽  
Ishan Shrivastava ◽  
Chitta Baral

Natural Language Inference (NLI) plays an important role in many natural language processing tasks such as question answering. However, existing NLI modules that are trained on existing NLI datasets have several drawbacks. For example, they do not capture the notion of entity and role well and often end up making mistakes such as “Peter signed a deal” can be inferred from “John signed a deal”. As part of this work, we have developed two datasets that help mitigate such issues and make the systems better at understanding the notion of “entities” and “roles”. After training the existing models on the new dataset we observe that the existing models do not perform well on one of the new benchmark. We then propose a modification to the “word-to-word” attention function which has been uniformly reused across several popular NLI architectures. The resulting models perform as well as their unmodified counterparts on the existing benchmarks and perform significantly well on the new benchmarks that emphasize “roles” and “entities”.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Changchang Zeng ◽  
Shaobo Li

Machine reading comprehension (MRC) is a challenging natural language processing (NLP) task. It has a wide application potential in the fields of question answering robots, human-computer interactions in mobile virtual reality systems, etc. Recently, the emergence of pretrained models (PTMs) has brought this research field into a new era, in which the training objective plays a key role. The masked language model (MLM) is a self-supervised training objective widely used in various PTMs. With the development of training objectives, many variants of MLM have been proposed, such as whole word masking, entity masking, phrase masking, and span masking. In different MLMs, the length of the masked tokens is different. Similarly, in different machine reading comprehension tasks, the length of the answer is also different, and the answer is often a word, phrase, or sentence. Thus, in MRC tasks with different answer lengths, whether the length of MLM is related to performance is a question worth studying. If this hypothesis is true, it can guide us on how to pretrain the MLM with a relatively suitable mask length distribution for MRC tasks. In this paper, we try to uncover how much of MLM’s success in the machine reading comprehension tasks comes from the correlation between masking length distribution and answer length in the MRC dataset. In order to address this issue, herein, (1) we propose four MRC tasks with different answer length distributions, namely, the short span extraction task, long span extraction task, short multiple-choice cloze task, and long multiple-choice cloze task; (2) four Chinese MRC datasets are created for these tasks; (3) we also have pretrained four masked language models according to the answer length distributions of these datasets; and (4) ablation experiments are conducted on the datasets to verify our hypothesis. The experimental results demonstrate that our hypothesis is true. On four different machine reading comprehension datasets, the performance of the model with correlation length distribution surpasses the model without correlation.


2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.


Sign in / Sign up

Export Citation Format

Share Document