scholarly journals Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty

2011 ◽  
Vol 39 (12) ◽  
pp. 1107-1114
Author(s):  
Jong-Bin Im ◽  
Jung-Sun Park
2017 ◽  
Vol 27 (7) ◽  
pp. 1084-1104 ◽  
Author(s):  
Xiaoqiang Zhang ◽  
Huiying Gao ◽  
Hong-Zhong Huang

When the linear elastic fracture mechanics-based approaches are used to predict the fatigue life of welded joints, initial crack size is a key point, which eventually affects the accuracy of total fatigue life prediction. Meanwhile, the life prediction process under random loading is complicated. In this paper, a novel method is proposed to determine the initial crack size, which is based on the results of back-extrapolation approach. The proposed method expresses the stress intensity factor, and the boundary between crack initiation and propagation period is taken into consideration. Based on the proposed method, deterministic total fatigue life can be obtained with fewer tests and less cost. In addition, the concept of equivalent crack size and its calculation model are proposed to reduce the complexity of the calculation process of fatigue life prediction under random loading, and model uncertainty is included into the prediction model of probabilistic fatigue life based on equivalent crack size. It is feasible, which has been verified, to take the influence of stress level into account when determining the initial crack size. Meanwhile, the proposal of equivalent crack size simplifies the calculation process of probabilistic fatigue life, and the consideration of model uncertainty is more conducive to assess the safety and reliability of the materials or structures.


2016 ◽  
Vol 866 ◽  
pp. 25-30
Author(s):  
He Sheng Tang ◽  
Jia He Mei ◽  
Wei Chen ◽  
Da Wei Li ◽  
Song Tao Xue

Various sources of uncertainty exist in concrete fatigue life prediction, such as variability in loading conditions, material parameters, experimental data and model uncertainty. In this article, the uncertainty model of concrete fatigue life prediction based on the S-N curve is built, and the evidence theory method is presented for uncertainty analysis in fatigue life prediction of concrete while considering the epistemic uncertainty of the parameter of the model. Based on the experimental of concrete four-point bending beams, the evidence theory method is applied to quantify the epistemic uncertainty stem from experimental data and model uncertainty. To improve the efficiency of computation, a method of differential evolution is adopted to speedup the works of uncertainty propagation. The efficiency and feasibility of the proposed approach are verified through a comparative analysis of probability theory.


Sign in / Sign up

Export Citation Format

Share Document