scholarly journals Crystallization of 3-hexulose-6-phosphate synthase

2021 ◽  
Vol 12 (3) ◽  
pp. 299-303
Author(s):  
Masoud Delfi ◽  
Leila Mahdavian ◽  
Mohammad Sattarifar ◽  
Nina Hakulinen ◽  
Juha Rouvinen

The crystal structures can reveal detailed information about the overall structure, active site structure, and functional mechanism of enzymes. This study focused on the crystallization of 3-hexulose-6-phosphate synthase from Methylomonas aminofaciens 77a, to produce higher resolution crystals for precise structural characterization. 3-Hexulose-6-phosphate synthase is from Methylomonas aminofaciens 77a (EC 4.1.2.43). It belongs to the orotidine 5'-monophosphate decarboxylase superfamily, and acts as a key enzyme for a ribulose-monophosphate cycle of formaldehyde fixation and detoxification. 3-Hexulose-6-phosphate synthase catalyzes the aldol condensation of formaldehyde with D-ribulose-5-phosphate. For the maximum activity, 3-hexulose-6-phosphate synthase requires Mg2+ or Mn2+ as ligands. MaHPS crystallized at the concentration of 7 mg/mL and conditions consisting of 0.2 M MgCl2, 18% PEG 3350 at pH = 7.0.

2006 ◽  
Vol 445 (2) ◽  
pp. 199-213 ◽  
Author(s):  
Paul G. Furtmüller ◽  
Martina Zederbauer ◽  
Walter Jantschko ◽  
Jutta Helm ◽  
Martin Bogner ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhaoyuan Lyu ◽  
Shichao Ding ◽  
Maoyu Wang ◽  
Xiaoqing Pan ◽  
Zhenxing Feng ◽  
...  

AbstractFe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’ performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.


2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S228
Author(s):  
Su-Jin Kang ◽  
Yasuto Todokoro ◽  
Ikuko Yumen ◽  
Bo Shen ◽  
Iku Iwasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document