Synthesis And Cytogenetic Effect Of Magnetic Nanoparticles

2015 ◽  
Vol 6 (11) ◽  
pp. 954-960 ◽  
Author(s):  
Bishnu K. Pandey
PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Long-Sheng Kuo ◽  
Ping-Hei Chen ◽  
Chin-Ting Yang

2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


2020 ◽  
Vol 84 (11) ◽  
pp. 1362-1365
Author(s):  
A. V. Komina ◽  
R. N. Yaroslavtsev ◽  
Y. V. Gerasimova ◽  
S. V. Stolyar ◽  
I. A. Olkhovsky ◽  
...  

2018 ◽  
pp. 17-28
Author(s):  
Hwunjae Lee ◽  
◽  
SangBock Lee ◽  
Geahwan Jin ◽  
Sergey NETESOV ◽  
...  

2018 ◽  
pp. 17-28
Author(s):  
Hwunjae Lee ◽  
◽  
SangBock Lee ◽  
Geahwan Jin ◽  
Sergey NETESOV ◽  
...  

Akustika ◽  
2020 ◽  
pp. 8-13
Author(s):  
Štefan Hardoň ◽  
Jozef Kúdelčík

Magnetic fluids with nanoparticles dispersed in water or oils offer attractive applications in biomedicine and industry. Biocompatible magnetic fluids are used for diagnostics and therapy in medical applications, in pharmacy, and biosensors. Application of ferrofluids is expanding into energy conservation, faster and efficient cooling, and hence better performance in a wide variety of practical applications (in heat exchangers, mainly in micro-cooling systems). For the study of the influence of an external magnetic field on the aggregation processes of magnetic nanoparticles in magnetic fluids, acoustic spectroscopy was used. The jump changes of the magnetic flux density at various temperatures influenced the acoustic attenuation. The measured changes were results of nanoparticle aggregations into new structures.


Sign in / Sign up

Export Citation Format

Share Document