scholarly journals An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations

2013 ◽  
Vol 13 (22) ◽  
pp. 11403-11421 ◽  
Author(s):  
O. Saunier ◽  
A. Mathieu ◽  
D. Didier ◽  
M. Tombette ◽  
D. Quélo ◽  
...  

Abstract. The Chernobyl nuclear accident, and more recently the Fukushima accident, highlighted that the largest source of error on consequences assessment is the source term, including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2014). Some studies have been performed to use dose rate measurements (Duranova et al., 1999; Astrup et al., 2004; Drews et al., 2004; Tsiouri et al., 2012) but none of the developed methods were carried out to assess the complex source term of a real accident situation like the Fukushima accident. However, dose rate measurements are generated by the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi Nuclear Power Plant (FD-NPP). The emissions for the eight main isotopes 133Xe, 134Cs, 136Cs, 137Cs, 137mBa, 131I, 132I and 132Te have been assessed. Accordingly, 105.9 PBq of 131I, 35.8 PBq of 132I, 15.5 PBq of 137Cs and 12 134 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. In total, it was found that for 80% of the measurements, simulated and observed dose rates agreed within a factor of 2. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131I are realistic but that 132I and 132Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.

2013 ◽  
Vol 13 (6) ◽  
pp. 15567-15614 ◽  
Author(s):  
O. Saunier ◽  
A. Mathieu ◽  
D. Didier ◽  
M. Tombette ◽  
D. Quélo ◽  
...  

Abstract. The Chernobyl nuclear accident and more recently the Fukushima accident highlighted that the largest source of error on consequences assessment is the source term including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2013) but none of them uses dose rate measurements. However, it is the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi nuclear power plant (FD-NPP). The emissions for the eight main isotopes 133Xe, 134Cs, 136Cs, 137Cs, 137mBa, 131I, 132I and 132Te have been assessed. Accordingly, 103 PBq of 131I, 35.5 PBq of 132I, 15.5 PBq of 137Cs and 12 100 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. The result is that the model-measurement agreement for all of the monitoring locations is correct for 80% of simulated dose rates that are within a factor of 2 of the observed values. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131I are realistic but that 132I and 132Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.


2014 ◽  
Vol 111 (10) ◽  
pp. E914-E923 ◽  
Author(s):  
Kouji H. Harada ◽  
Tamon Niisoe ◽  
Mie Imanaka ◽  
Tomoyuki Takahashi ◽  
Katsumi Amako ◽  
...  

Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August–September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions.


2020 ◽  
Vol 55 (2) ◽  
pp. 107-115
Author(s):  
O. Saunier ◽  
I. Korsakissok ◽  
D. Didier ◽  
T. Doursout ◽  
A. Mathieu

The assessment of the source term including the time evolution of the release rate into the atmosphere and its distribution between radionuclides is one of the key issues in the understanding of the consequences of a nuclear accident. Inverse modeling methods, which combine environmental measurements, and atmospheric dispersion models have been proven to be efficient in assessing the source term due to an accidental situation. We developed our own tool, which has been applied to the Fukushima accident by using dose rate measurements and air concentration measurements. The inverse modeling tool has been implemented and tested during exercises implying fictitious radioactive releases with the aim of testing this method for emergency management. The exercises showed the relevance of the inverse modeling tool and it is a rewarding experience, which helped us to identify the required developments for the purpose of an operational use.


Author(s):  
Sida Sun ◽  
Sheng Fang ◽  
Yun Liu ◽  
Hong Li

The source term information of radioactive release in a nuclear accident is important for nuclear accident classification, radiological consequences evaluation and emergency response. Two major categories of source term estimation techniques are forward method based on the status data of the nuclear reactor and backward method based on environmental monitoring data. Although the forward method is more widely used, it may introduce large uncertainties into the source term estimate due to its subjective parameters and low quality of reactor status data in a severe accident. To reduce these uncertainties, a coupled source term estimation method that combines both forward and backward models, is proposed in this study. The forward part provides a source term forecast model based on Response Technical Manual RTM-96. Under the framework of sequential data assimilation, the backward part iteratively reduces the uncertainties in the source term estimate using environmental monitoring data. Numerical experiments with different uncertainties are performed using the reactor and monitoring point information of real Chinese nuclear power plant and its atmospheric tracer experiments.


Author(s):  
Ye Yang ◽  
Bo Cao ◽  
Yixue Chen

The Chernobyl accident and Fukushima 1 Nuclear Power Plant accident are the most serious accidents in the history of the nuclear technology and industry. A large amount of radioactive materials from nuclear power plant were released, leading to huge damage and long-term effect on the environment as well as the human health neighbor to the plant. Therefore, simulating the transport and transformation of radionuclides in the atmosphere is significant for decision makers to take steps at all level. Now, many different dispersion models are widely applied and used to simulate the transport and transformation of radionuclide such as Gaussian model, Lagrangian model and Eulerian model. Though the Eulerian or Lagrangian models have several advantages, such as high spatial resolution, fully 3D descriptions of the meteorological, the simple Gaussian plume model is still widely chosen because of its higher accuracy and faster calculation. In this study, the atmospheric dispersion of leaked radioactive material during nuclear accident is simulated by using Gaussian plume model. The relative concentration distribution of the radionuclides and the trajectory of the distribution centrode are obtained in taking account of different geographical environments, wind direction, wind velocity, and stability category. These results can provide a favorable evidence for the management of nuclear accident emergency.


Sign in / Sign up

Export Citation Format

Share Document