scholarly journals Risk perception regarding a nuclear accident and common factors related to health among guardians residing near a restarted nuclear power plant in Japan after the Fukushima accident

Author(s):  
Hitomi Matsunaga ◽  
Makiko Orita ◽  
Yasuyuki Taira ◽  
Kaoru Shibayama ◽  
Koichi Shinchi ◽  
...  
2013 ◽  
Vol 13 (22) ◽  
pp. 11403-11421 ◽  
Author(s):  
O. Saunier ◽  
A. Mathieu ◽  
D. Didier ◽  
M. Tombette ◽  
D. Quélo ◽  
...  

Abstract. The Chernobyl nuclear accident, and more recently the Fukushima accident, highlighted that the largest source of error on consequences assessment is the source term, including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2014). Some studies have been performed to use dose rate measurements (Duranova et al., 1999; Astrup et al., 2004; Drews et al., 2004; Tsiouri et al., 2012) but none of the developed methods were carried out to assess the complex source term of a real accident situation like the Fukushima accident. However, dose rate measurements are generated by the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi Nuclear Power Plant (FD-NPP). The emissions for the eight main isotopes 133Xe, 134Cs, 136Cs, 137Cs, 137mBa, 131I, 132I and 132Te have been assessed. Accordingly, 105.9 PBq of 131I, 35.8 PBq of 132I, 15.5 PBq of 137Cs and 12 134 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. In total, it was found that for 80% of the measurements, simulated and observed dose rates agreed within a factor of 2. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131I are realistic but that 132I and 132Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.


Author(s):  
Michio Murakami ◽  
Takao Nirasawa ◽  
Takao Yoshikane ◽  
Keisuke Sueki ◽  
Kimikazu Sasa ◽  
...  

Evaluation of radiation exposure from diet is necessary under the assumption of a virtual accident as a part of emergency preparedness. Here, we developed a model with complete consideration of the regional food trade using deposition data simulated by a transport model, and estimated the dietary intake of radionuclides and the effectiveness of regulation (e.g., restrictions on the distribution of foods) after the Fukushima accident and in virtual accident scenarios. We also evaluated the dilution factors (i.e., ratios of contaminated foods to consumed foods) and cost-effectiveness of regulation as basic information for setting regulatory values. The doses estimated under actual emission conditions were generally consistent with those observed in food-duplicate and market-basket surveys within a factor of three. Regulation of restricted food distribution resulted in reductions in the doses of 54–65% in the nearest large city to the nuclear power plant. The dilution factors under actual emission conditions were 4.4% for radioiodine and 2.7% for radiocesium, which are ~20 times lower than those used in the Japanese provisional regulation values after the Fukushima accident. Strict regulation worsened the cost-effectiveness for both radionuclides. This study highlights the significance and utility of the developed model for a risk analysis of emergency preparedness and regulation.


Author(s):  
Wei Gao ◽  
Guofeng Tang ◽  
Jingyu Zhang ◽  
Qinfang Zhang

Seismic risk of nuclear power plant has drawn increasing attention after Fukushima accident. An intensive study has been carried out in this paper, including sampling of component and structure fragility based on Monte Carlo method, fragility analysis on system or plant level, convolution of seismic hazard curves and fragility curves. To derive more accurate quantification results, the binary decision diagram (BDD) algorithm was introduced into the quantification process, which effectively reduces the deficiency of the conventional method on coping with large probability events and negated logic. Seismic Probabilistic Safety Analysis (PSA/PRA) quantification software was developed based on algorithms discussed in this paper. Tests and application has been made for this software with a specific nuclear power plant seismic PSA model. The results show that this software is effective on seismic PSA quantification.


Author(s):  
Afrida Fairuz ◽  
Md. Hossain Sahadath

Abstract The prevailing meteorological conditions around the site of the proposed Rooppur Nuclear Power Plant have been studied vigorously. The in-depth perusal has revealed the existence of three seasons—summer, rainy, and winter with stability classes A, B, and A, respectively, during the day and F during the night. The eventual wind speed and direction of the seasons have been observed. Subsequent locations along the dispersion directions have been identified using googleearthpro, which includes highways, educational institution, medical centers, commercial area, etc. Dose contours corresponding to a source term equivalent to Fukushima accident have been created to verify the dispersion direction and perceive the plume arrival time in the designated locations using health physics code HotSpot. Strong dependency of plume arrival time on the stability classes has been observed, and lowest values are found for F stability class. Finally, some shelter houses are proposed to accommodate endangered inhabitants during emergency.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0212917 ◽  
Author(s):  
Hiroko Hori ◽  
Makiko Orita ◽  
Yasuyuki Taira ◽  
Takashi Kudo ◽  
Noboru Takamura

2013 ◽  
Vol 33 (4) ◽  
pp. 773-789 ◽  
Author(s):  
Jung-Chun Ho ◽  
Shu-Fen Kao ◽  
Jung-Der Wang ◽  
Chien-Tien Su ◽  
Chiao-Tzu Patricia Lee ◽  
...  

2015 ◽  
Vol 10 (4) ◽  
pp. 627-634 ◽  
Author(s):  
Takaaki Kato ◽  
◽  
Shogo Takahara ◽  
Toshimitsu Homma ◽  

This study investigates factors in gaps between perceived and actual straight-line distance to Japan’s Kashiwazaki-Kariwa nuclear power plant (KKNPP). The distance to areas in the official accident response plan is defined using straight lines from the NPP, making it important to determine whether area residents understand these distances correctly. Adults living in the two municipalities cohosting the NPP were surveyed randomly in 2005, 2010 and 2011. In this study, we consider three groups of factors — geographical features, personal attributes, and experience in events highlighting nuclear safety. The Niigata-ken Chuetsu-oki earthquake hit the NPP between the first and second of these three surveys, and the Tohoku earthquake and the March 2011 Fukushima nuclear accident occurred between the second and the third surveys. Before the Fukushima accident, overestimations of straight-line distance were common among respondents, and geographical features such as lack of NPP visibility aggravated bias between actual and perceived distance. After the Fukushima accident, underestimation of the distance became common and personal attributes became more influential as the factor of the perceived-actual distance gap.


Sign in / Sign up

Export Citation Format

Share Document