scholarly journals Spring and summer contrast in new particle formation over nine forest areas in North America

2015 ◽  
Vol 15 (24) ◽  
pp. 13993-14003 ◽  
Author(s):  
F. Yu ◽  
G. Luo ◽  
S. C. Pryor ◽  
P. R. Pillai ◽  
S. H. Lee ◽  
...  

Abstract. Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~ 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.

2015 ◽  
Vol 15 (15) ◽  
pp. 21271-21298 ◽  
Author(s):  
F. Yu ◽  
G. Luo ◽  
S. C. Pryor ◽  
P. R. Pillai ◽  
S. H. Lee ◽  
...  

Abstract. Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF) but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics; Nucl-IMN). On average, NPF occurred on ~ 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly over-predicts while the Nucl-IMN scheme slightly under-predicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.


2017 ◽  
Vol 17 (8) ◽  
pp. 4997-5005 ◽  
Author(s):  
Fangqun Yu ◽  
Gan Luo ◽  
Alexey B. Nadykto ◽  
Jason Herb

Abstract. Secondary particles formed via new particle formation (NPF) dominate cloud condensation nuclei (CCN) abundance in most parts of the troposphere and are important for aerosol indirect radiative forcing (IRF). Laboratory measurements have shown that certain organic compounds can significantly enhance the binary nucleation of sulfuric acid and H2O. According to our recent study comparing particle size distributions measured in nine forest areas in North America with those predicted by a global size-resolved aerosol model, current H2SO4–organics nucleation parameterizations appear to significantly overpredict NPF and particle number concentrations in summer. The lack of temperature dependence in the current H2SO4–organics nucleation parameterization has been suggested to be a possible reason for the observed overprediction. In this work, H2SO4–organics clustering thermodynamics from quantum chemical studies has been employed to develop a scheme to incorporate temperature dependence into H2SO4–organics nucleation parameterization. We show that temperature has a strong impact on H2SO4–organics nucleation rates and may reduce the nucleation rate by  ∼  1 order of magnitude per 10 K of temperature increase. The particle number concentrations in summer over North America based on the revised scheme is a factor of more than 2 lower, which is in much better agreement with the observations. With the temperature-dependent H2SO4–organics nucleation parameterization, the summer CCN concentrations in the lower troposphere in the Northern Hemisphere are about 10–30 % lower compared to the temperature-independent parameterization. This study highlights the importance of the temperature effect and its impacts on NPF in the global modeling of aerosol number abundance.


2016 ◽  
Author(s):  
Fangqun Yu ◽  
Gan Luo ◽  
Alexey B. Nadykto ◽  
Jason Herb

Abstract. Secondary particles formed via new particle formation (NPF) dominate cloud condensation nuclei (CCN) abundance in most parts of the troposphere and are important for aerosol indirect radiative forcing (IRF). Laboratory measurements have shown that certain organic compounds can significantly enhance binary nucleation of sulfuric acid and H2O. According to our recent study comparing particle size distributions measured in nine forest areas in North America with those predicted by a global size-resolved aerosol model, current H2SO4-Organics nucleation parameterizations appear to significantly over-predict NPF and particle number concentrations in summer. The lack of the temperature dependence in the current H2SO4-Organics nucleation parameterization has been suggested to be a possible reason for the observed over-prediction. In this work, H2SO4-Organics clustering thermodynamics from quantum-chemical studies has been employed to develop a scheme to incorporate temperature dependence into H2SO4-Organics nucleation parameterization. We show that temperature has a strong impact on H2SO4-Organics nucleation rates, and may reduce nucleation rate by ~ one order of magnitude per 10 K of the temperature increase. The particle number concentrations in summer over North America based on the revised scheme is a factor of more than two lower, in much better agreement with the observations. With the temperature-dependent H2SO4-Organics nucleation parameterization, the summer month CCN concentrations in the lower troposphere in the northern hemisphere are about 10–30 % lower and the aerosol first IRF about 0.5–1.0 W/m2 less negative compared to the temperature independent one. This study highlights the importance of the temperature effect and its impacts on NPF in global modeling of aerosol IRF.


2011 ◽  
Vol 11 (12) ◽  
pp. 6013-6027 ◽  
Author(s):  
V. P. Kanawade ◽  
B. T. Jobson ◽  
A. B. Guenther ◽  
M. E. Erupe ◽  
S. N. Pressley ◽  
...  

Abstract. Production of new particles over forests is an important source of cloud condensation nuclei that can affect climate. While such particle formation events have been widely observed, their formation mechanisms over forests are poorly understood. Our observations made in a mixed deciduous forest with large isoprene emissions during the summer displayed a surprisingly rare occurrence of new particle formation (NPF). Typically, NPF events occur around noon but no NPF events were observed during the 5 weeks of measurements. The exceptions were two evening ultrafine particle events. During the day, sulfuric acid concentrations were in the 106 cm−3 range with very low preexisting aerosol particles, a favorable condition for NPF to occur even during the summer. The ratio of emitted isoprene carbon to monoterpene carbon at this site was similar to that in Amazon rainforests (ratio >10), where NPF events are also very rare, compared with a ratio <0.5 in Finland boreal forests, where NPF events are frequent. Our results suggest that large isoprene emissions can suppress NPF formation in forests although the underlying mechanism for the suppression is unclear. The two evening ultrafine particle events were associated with the transported anthropogenic sulfur plumes and ultrafine particles were likely formed via ion-induced nucleation. Changes in landcover and environmental conditions could modify the isoprene suppression of NPF in some forest regions resulting in a radiative forcing that could have influence on the climate.


2011 ◽  
Vol 11 (4) ◽  
pp. 11039-11075 ◽  
Author(s):  
V. P. Kanawade ◽  
B. Tom Jobson ◽  
A. B. Guenther ◽  
M. E. Erupe ◽  
S. N. Pressely ◽  
...  

Abstract. Production of new particles over forests is an important source of cloud condensation nuclei that can affect climate. While such particle formation events have been widely observed, their formation mechanisms over forests are poorly understood. Our observations made in a mixed deciduous Michigan forest with large isoprene emissions during the summer show surprisingly rare occurrence of new particle formation (NPF). No NPF events were observed during the 5 weeks of measurements, except two evening ultrafine particle events as opposed to the typically observed noontime NPF elsewhere. Sulfuric acid concentrations were in the 106 cm−3 ranges with very low preexisting aerosol particles, a favorable condition for NPF to occur even during the summer. The ratio of emitted isoprene carbon to monoterpene carbon at this site was similar to that in Amazon rainforests (ratio >10), where NPF is also very rare, compared with a ratio <0.5 in Finland boreal forests, where NPF events are frequent. Our results showed that large isoprene emissions can suppress NPF formation in forests although the underlying mechanism for the suppression is unclear and future studies are needed to reveal the likely mechanism. The two evening ultrafine particle events were associated with the transported anthropogenic sulfur plumes and the ultrafine particles likely formed via ion induced nucleation. Changes in landcover and environmental conditions could modify the isoprene suppression of NPF in some forest regions resulting in a radiative forcing that could influence climate.


2020 ◽  
Vol 20 (4) ◽  
pp. 2591-2601
Author(s):  
Fangqun Yu ◽  
Gan Luo ◽  
Arshad Arjunan Nair ◽  
James J. Schwab ◽  
James P. Sherman ◽  
...  

Abstract. Atmospheric particles can act as cloud condensation nuclei (CCN) and modify cloud properties and precipitation and thus indirectly impact the hydrological cycle and climate. New particle formation (NPF or nucleation), frequently observed at locations around the globe, is an important source of ultrafine particles and CCN in the atmosphere. In this study, wintertime NPF over the Northeastern United States (NEUS) is simulated with WRF-Chem coupled with a size-resolved (sectional) advanced particle microphysics (APM) model. Model-simulated variations in particle number concentrations during a 2-month period (November–December 2013) are in agreement with corresponding measurements taken at Pinnacle State Park (PSP), New York, and Appalachian State University (APP), North Carolina. We show that, even during wintertime, regional nucleation occurs and contributes significantly to ultrafine-particle and CCN number concentrations over the NEUS. The model shows that, due to low biogenic emissions during this period, wintertime regional nucleation is solely controlled by inorganic species and the newly developed ternary ion-mediated nucleation scheme is able to capture the variations in observed particle number concentrations (ranging from ∼200 to 20 000 cm−3) at both PSP and APP. Total particle and CCN number concentrations dramatically increase following NPF events and have the highest values over the Ohio Valley region, where elevated [SO2] is sustained by power plants. Secondary particles dominate particle number abundance over the NEUS, and their fraction increases with altitude from ≳85 % near the surface to ≳95 % in the upper troposphere. The secondary fraction of CCN also increases with altitude, from 20 %–50 % in the lower boundary layer to 50 %–60 % in the middle troposphere to 70 %–85 % in the upper troposphere.


2008 ◽  
Vol 8 (2) ◽  
pp. 6313-6353 ◽  
Author(s):  
L. Laakso ◽  
H. Laakso ◽  
P. P. Aalto ◽  
P. Keronen ◽  
T. Petäjä ◽  
...  

Abstract. We have analyzed one year (July 2006–July 2007) of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. Gases and particles had a clear seasonal and diurnal variation, which was associated with field fires and biological activity together with local meteorology. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1) and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1). Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.


2014 ◽  
Vol 14 (10) ◽  
pp. 15149-15189 ◽  
Author(s):  
J. F. Peng ◽  
M. Hu ◽  
Z. B. Wang ◽  
X. F. Huang ◽  
P. Kumar ◽  
...  

Abstract. Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effect on regional air quality, haze and human health. In this study, we conducted 15 different field measurement campaigns, each one-month long, between 2007 and 2011 at 13 individual sites in China. These were 5 urban sites, 4 regional sites, 3 coastal/background sites and one ship cruise measurement along eastern coastline of China. Size resolved particles were measured in the 15–600 nm size range. The median particle number concentrations (PNC) were found to vary in the range of 1.1–2.2 × 104 cm−3 at urban sites, 0.8–1.5 × 104 cm−3 at regional sites, 0.4–0.6 × 104 cm−3 at coastal/background sites, and 0.5 × 104 cm−3 during cruise measurements. Peak diameters at each of these sites varied greatly from 24 nm to 115 nm. Particles in the 15–25 nm (nucleation mode), 25–100 nm (Aitken mode) and 100–600 nm (accumulation mode) range showed different characteristics at each of the studied sites, indicating the features of primary emissions and secondary formation in these diversified atmospheric environments. Diurnal variations show a build-up of accumulation mode particles belt at regional sites, suggesting the contribution of regional secondary aerosol pollution. Frequencies of new particle formation (NPF) events were much higher at urban and regional sites than at coastal sites and cruise measurement. The average growth rates (GRs) of nucleation mode particles were 8.0–10.9 nm h−1 at urban sites, 7.4–13.6 nm h−1 at regional sites and 2.8–7.5 nm h−1 at both coastal and cruise measurement sites. The high gaseous precursors and strong oxidation at urban and regional sites not only favored the formation of particles, but also accelerated the growth rate of the nucleation mode particles. No significant difference in condensation sink (CS) during NPF days were observed among different site types, suggesting that the NPF events in background area were more influenced by the pollutant transport. In addition, average contributions of NPF events to potential cloud condensation nuclei (CCN) at 0.2% super-saturation in the afternoon of all sampling days were calculated as 11% and 6% at urban sites and regional sites, respectively. On the other hand, NPF events at coastal and cruise measurement sites had little impact on potential production of CCN. This study provides a large dataset of aerosol size distribution in diversified atmosphere of China, improving our general understanding of emission, secondary formation, new particles formation and corresponding CCN activity of submicron aerosols in Chinese environments.


2020 ◽  
Author(s):  
Martin Heinritzi ◽  
Lubna Dada ◽  
Mario Simon ◽  
Dominik Stolzenburg ◽  
Andrea C. Wagner ◽  
...  

Abstract. Nucleation of atmospheric vapors produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly-oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapors. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly-oxygenated dimers with 19 or 20 carbon atoms – which drive particle nucleation and early growth – while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C20 and C15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2·) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene/monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C15 dimers contribute to secondary organic aerosol and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH·) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene derived RO2· radicals that reduce C20 formation. RO2· termination emerges as the critical step that determines the HOM distribution and the corresponding nucleation capability. Species that reduce the C20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.


2020 ◽  
Vol 20 (20) ◽  
pp. 11809-11821 ◽  
Author(s):  
Martin Heinritzi ◽  
Lubna Dada ◽  
Mario Simon ◽  
Dominik Stolzenburg ◽  
Andrea C. Wagner ◽  
...  

Abstract. Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms – which drive particle nucleation and early growth – while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C20 and C15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2⚫) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene ∕ monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH⚫) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2⚫ radicals that reduce C20 formation. RO2⚫ termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document