scholarly journals Modelling organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013 in the western Mediterranean region

Author(s):  
Mounir Chrit ◽  
Karine Sartelet ◽  
Jean Sciare ◽  
Jorge Pey ◽  
Nicolas Marchand ◽  
...  

Abstract. In the framework of the Chemistry-Aerosol Mediterranean Experiment, a measurement site was set up at a remote site (Ersa) on Corsica Island in the northwestern Mediterranean Sea. Measurement campaigns performed during the summers of 2012 and 2013 showed high organic aerosol concentrations, mostly from biogenic origin. This work aims at representing the organic aerosol concentrations and properties (oxidation state and hydrophilic) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Biogenic precursors are isoprene, monoterpenes (with α-pinene and limonene as surrogate species) and sesquiterpenes. In this work, the following model oxidation products of monoterpenes are added: (i) a carboxylic acid (MBTCA) to represent multi-generation oxidation products in the low-NOx regime, (ii) organic nitrate chemistry, (iii) extremely low volatility organic compounds (ELVOCs) formed by ozonolysis. The model shows good agreement to measurements of organic concentrations for both 2012 and 2013 summer campaigns. The modeled oxidation state and hydrophilic properties of the organic aerosols also agree reasonably well with the measurements. The influence of the different chemical processes added to the model on the oxidation level of organics is studied. Measured and simulated water-soluble organic concentrations (WSOC) show that even at a remote site next to the sea, about 64 % of the organic carbon is soluble. The concentrations of WSOC vary with the origins of the air masses and the composition of organic aerosols. The marine organic emissions only contribute to a few percents of the organic mass in PM1, with maxima above the sea.

2017 ◽  
Vol 17 (20) ◽  
pp. 12509-12531 ◽  
Author(s):  
Mounir Chrit ◽  
Karine Sartelet ◽  
Jean Sciare ◽  
Jorge Pey ◽  
Nicolas Marchand ◽  
...  

Abstract. In the framework of the Chemistry-Aerosol Mediterranean Experiment, a measurement site was set up at a remote site (Ersa) on Corsica Island in the northwestern Mediterranean Sea. Measurement campaigns performed during the summers of 2012 and 2013 showed high organic aerosol concentrations, mostly from biogenic origin. This work aims to represent the organic aerosol concentrations and properties (oxidation state and hydrophilicity) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Biogenic precursors are isoprene, monoterpenes and sesquiterpenes. In this work, the following model oxidation products of monoterpenes are added: (i) a carboxylic acid (MBTCA) to represent multi-generation oxidation products in the low-NOx regime, (ii) organic nitrate chemistry and (iii) extremely low-volatility organic compounds (ELVOCs) formed by ozonolysis. The model shows good agreement of measurements of organic concentrations for both 2012 and 2013 summer campaigns. The modelled oxidation property and hydrophilic organic carbon properties of the organic aerosols also agree reasonably well with the measurements. The influence of the different chemical processes added to the model on the oxidation level of organics is studied. Measured and simulated water-soluble organic carbon (WSOC) concentrations show that even at a remote site next to the sea, about 64 % of the organic carbon is soluble. The concentrations of WSOC vary with the origins of the air masses and the composition of organic aerosols. The marine organic emissions only contribute to a few percent of the organic mass in PM1, with maxima above the sea.


2011 ◽  
Vol 11 (14) ◽  
pp. 7355-7373 ◽  
Author(s):  
S. Aksoyoglu ◽  
J. Keller ◽  
I. Barmpadimos ◽  
D. Oderbolz ◽  
V. A. Lanz ◽  
...  

Abstract. This paper describes aerosol modelling in Europe with a focus on Switzerland during summer and winter periods. We modelled PM2.5 (particles smaller than 2.5 μm in aerodynamic diameter) for one summer and two winter periods in years 2006 and 2007 using the CAMx air quality model. The meteorological fields were obtained from MM5 simulations. The modelled wind speeds during some low-wind periods, however, had to be calibrated with measurements to use realistic input for the air quality model. The detailed AMS (aerosol mass spectrometer) measurements at specific locations were used to evaluate the model results. In addition to the base case simulations, we carried out sensitivity tests with modified aerosol precursor emissions, air temperature and deposition. Aerosol concentrations in winter 2006 were twice as high as those in winter 2007, however, the chemical compositions were similar. CAMx could reproduce the relative composition of aerosols very well both in the winter and summer periods. Absolute concentrations of aerosol species were underestimated by about 20 %. Both measurements and model results suggest that organic aerosol (30–38 %) and particulate nitrate (30–36 %) are the main aerosol components in winter. In summer, organic aerosol dominates the aerosol composition (55–57 %) and is mainly of secondary origin. The contribution of biogenic volatile organic compound (BVOC) emissions to the formation of secondary organic aerosol (SOA) was predicted to be very large (>95 %) in Switzerland. The main contributors to the modelled SOA concentrations were oxidation products of monoterpenes and sesquiterpenes as well as oligomerization of oxidized compounds. The fraction of primary organic aerosol (POA) derived from measurements was lower than the model predictions indicating the importance of volatility of POA, which has not yet been taken into account in CAMx. Sensitivity tests with reduced NOx and NH3 emissions suggest that aerosol formation is more sensitive to ammonia emissions in winter in a large part of Europe. In Switzerland however, aerosol formation is predicted to be NOx-sensitive. In summer, effects of NOx and NH3 emission reductions on aerosol concentrations are predicted to be lower mostly due to lower ammonium nitrate concentrations. In general, the sensitivity to NH3 emissions is weaker in summer due to higher NH3 emissions.


2010 ◽  
Vol 10 (12) ◽  
pp. 5491-5514 ◽  
Author(s):  
A. Hodzic ◽  
J. L. Jimenez ◽  
S. Madronich ◽  
M. R. Canagaratna ◽  
P. F. DeCarlo ◽  
...  

Abstract. It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20–30 μg sm−3 ppm−1 up to 60–70 μg sm−3 ppm−1 between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R2=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio.


2011 ◽  
Vol 11 (4) ◽  
pp. 10799-10844
Author(s):  
S. Aksoyoglu ◽  
J. Keller ◽  
I. Barmpadimos ◽  
D. Oderbolz ◽  
V. A. Lanz ◽  
...  

Abstract. This paper describes aerosol modelling in Europe with a focus on Switzerland during summer and winter periods. We modelled PM2.5 (particles smaller than 2.5 μm in aerodynamic diameter) for one summer and two winter periods in years 2006 and 2007 using the MM5/CAMx air quality model system. The detailed AMS (aerosol mass spectrometer) measurements at specific locations were used to evaluate the model results. In addition to the base case simulations, we carried out sensitivity tests with modified aerosol precursor emissions, air temperature and deposition. Aerosol concentrations in winter 2006 were twice as high as those in winter 2007, however, the chemical compositions were similar. CAMx could reproduce the relative composition of aerosols very well both in the winter and summer periods. Absolute concentrations of aerosol species were underestimated by about 20%. Both measurements and model results suggest that organic aerosol (30–38%) and particulate nitrate (30–36%) are the main aerosol components in winter. In summer, organic aerosol dominates the aerosol composition (55–57%) and is mainly of secondary origin. The contribution of biogenic volatile organic compound (BVOC) emissions to the formation of secondary organic aerosol (SOA) was predicted to be very large (>95%) in Switzerland. The main contributors to the modelled SOA concentrations were oxidation products of monoterpenes and sesquiterpenes as well as oligomerization of oxidized compounds. The fraction of primary organic aerosol (POA) derived from measurements was lower than the model predictions indicating the importance of volatility of POA, which has not yet been taken into account in CAMx. Sensitivity tests with reduced NOx and NH3 emissions suggest that aerosol formation is more sensitive to ammonia emissions in winter in a large part of Europe. In Switzerland however, aerosol formation is predicted to be NOx-sensitive. In summer, effects of NOx and NH3 emission reductions on aerosol concentrations are predicted to be lower mostly due to lower ammonium nitrate concentrations. In general, the sensitivity to NH3 emissions is weaker in summer due to higher NH3 emissions.


2019 ◽  
Vol 19 (11) ◽  
pp. 7279-7295 ◽  
Author(s):  
Athanasia Vlachou ◽  
Anna Tobler ◽  
Houssni Lamkaddam ◽  
Francesco Canonaco ◽  
Kaspar R. Daellenbach ◽  
...  

Abstract. Bootstrap analysis is commonly used to capture the uncertainties of a bilinear receptor model such as the positive matrix factorization (PMF) model. This approach can estimate the factor-related uncertainties and partially assess the rotational ambiguity of the model. The selection of the environmentally plausible solutions, though, can be challenging, and a systematic approach to identify and sort the factors is needed. For this, comparison of the factors between each bootstrap run and the initial PMF output, as well as with externally determined markers, is crucial. As a result, certain solutions that exhibit suboptimal factor separation should be discarded. The retained solutions would then be used to test the robustness of the PMF output. Meanwhile, analysis of filter samples with the Aerodyne aerosol mass spectrometer and the application of PMF and bootstrap analysis on the bulk water-soluble organic aerosol mass spectra have provided insight into the source identification and their uncertainties. Here, we investigated a full yearly cycle of the sources of organic aerosol (OA) at three sites in Estonia: Tallinn (urban), Tartu (suburban) and Kohtla-Järve (KJ; industrial). We identified six OA sources and an inorganic dust factor. The primary OA types included biomass burning, dominant in winter in Tartu and accounting for 73 % ± 21 % of the total OA, primary biological OA which was abundant in Tartu and Tallinn in spring (21 % ± 8 % and 11 % ± 5 %, respectively), and two other primary OA types lower in mass. A sulfur-containing OA was related to road dust and tire abrasion which exhibited a rather stable yearly cycle, and an oil OA was connected to the oil shale industries in KJ prevailing at this site that comprises 36 % ± 14 % of the total OA in spring. The secondary OA sources were separated based on their seasonal behavior: a winter oxygenated OA dominated in winter (36 % ± 14 % for KJ, 25 % ± 9 % for Tallinn and 13 % ± 5 % for Tartu) and was correlated with benzoic and phthalic acid, implying an anthropogenic origin. A summer oxygenated OA was the main source of OA in summer at all sites (26 % ± 5 % in KJ, 41 % ± 7 % in Tallinn and 35 % ± 7 % in Tartu) and exhibited high correlations with oxidation products of a-pinene-like pinic acid and 3-methyl-1, 2, 3-butanetricarboxylic acid (MBTCA), suggesting a biogenic origin.


2021 ◽  
Vol 21 (10) ◽  
pp. 8067-8088
Author(s):  
Vincent Michoud ◽  
Elise Hallemans ◽  
Laura Chiappini ◽  
Eva Leoz-Garziandia ◽  
Aurélie Colomb ◽  
...  

Abstract. The characterization of the molecular composition of organic carbon in both gaseous and aerosol is key to understanding the processes involved in the formation and aging of secondary organic aerosol. Therefore a technique using active sampling on cartridges and filters and derivatization followed by analysis using a thermal desorption–gas chromatography–mass spectrometer (TD–GC–MS) has been used. It is aimed at studying the molecular composition of organic carbon in both gaseous and aerosol phases (PM2.5) during an intensive field campaign which took place in Corsica (France) during the summer of 2013: the ChArMEx (Chemistry and Aerosol Mediterranean Experiment) SOP1b (Special Observation Period 1B) campaign. These measurements led to the identification of 51 oxygenated (carbonyl and or hydroxyl) compounds in the gaseous phase with concentrations between 21 and 3900 ng m−3 and of 85 compounds in the particulate phase with concentrations between 0.3 and 277 ng m−3. Comparisons of these measurements with collocated data using other techniques have been conducted, showing fair agreement in general for most species except for glyoxal in the gas phase and malonic, tartaric, malic and succinic acids in the particle phase, with disagreements that can reach up to a factor of 8 and 20 on average, respectively, for the latter two acids. Comparison between the sum of all compounds identified by TD–GC–MS in the particle phase and the total organic matter (OM) mass reveals that on average 18 % of the total OM mass can be explained by the compounds measured by TD–GC–MS. This number increases to 24 % of the total water-soluble OM (WSOM) measured by coupling the Particle Into Liquid Sampler (PILS)-TOC (total organic carbon) if we consider only the sum of the soluble compounds measured by TD–GC–MS. This highlights the important fraction of the OM mass identified by these measurements but also the relative important fraction of OM mass remaining unidentified during the campaign and therefore the complexity of characterizing exhaustively the organic aerosol (OA) molecular chemical composition. The fraction of OM measured by TD–GC–MS is largely dominated by di-carboxylic acids, which represent 49 % of the PM2.5 content detected and quantified by this technique. Other contributions to PM2.5 composition measured by TD–GC–MS are then represented by tri-carboxylic acids (15 %), alcohols (13 %), aldehydes (10 %), di-hydroxy-carboxylic acids (5 %), monocarboxylic acids and ketones (3 % each), and hydroxyl-carboxylic acids (2 %). These results highlight the importance of polyfunctionalized carboxylic acids for OM, while the chemical processes responsible for their formation in both phases remain uncertain. While not measured by the TD–GC–MS technique, humic-like substances (HULISs) represent the most abundant identified species in the aerosol, contributing for 59 % of the total OM mass on average during the campaign. A total of 14 compounds were detected and quantified in both phases, allowing the calculation of experimental partitioning coefficients for these species. The comparison of these experimental partitioning coefficients with theoretical ones, estimated by three different models, reveals large discrepancies varying from 2 to 7 orders of magnitude. These results suggest that the supposed instantaneous equilibrium being established between gaseous and particulate phases assuming a homogeneous non-viscous particle phase is questionable.


2013 ◽  
Vol 13 (17) ◽  
pp. 8651-8667 ◽  
Author(s):  
Y. B. Lim ◽  
Y. Tan ◽  
B. J. Turpin

Abstract. Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10−6 − ~ 10−3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical–radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.


2021 ◽  
Vol 14 (3) ◽  
pp. 1681-1697
Author(s):  
Jianhui Jiang ◽  
Imad El Haddad ◽  
Sebnem Aksoyoglu ◽  
Giulia Stefenelli ◽  
Amelie Bertrand ◽  
...  

Abstract. Increasing evidence from experimental studies suggests that the losses of semi-volatile vapors to chamber walls could be responsible for the underestimation of organic aerosol (OA) in air quality models that use parameters obtained from chamber experiments. In this study, a box model with a volatility basis set (VBS) scheme was developed, and the secondary organic aerosol (SOA) yields with vapor wall loss correction were optimized by a genetic algorithm based on advanced chamber experimental data for biomass burning. The vapor wall loss correction increases the SOA yields by a factor of 1.9–4.9 and leads to better agreement with measured OA for 14 chamber experiments under different temperatures and emission loads. To investigate the influence of vapor wall loss correction on regional OA simulations, the optimized parameterizations (SOA yields, emissions of intermediate-volatility organic compounds from biomass burning, and enthalpy of vaporization) were implemented in the regional air quality model CAMx (Comprehensive Air Quality Model with extensions). The model results from the VBS schemes with standard (VBS_BASE) and vapor-wall-loss-corrected parameters (VBS_WLS), as well as the traditional two-product approach, were compared and evaluated by OA measurements from five Aerodyne aerosol chemical speciation monitor (ACSM) or aerosol mass spectrometer (AMS) stations in the winter of 2011. An additional reference scenario, VBS_noWLS, was also developed using the same parameterization as VBS_WLS except for the SOA yields, which were optimized by assuming there is no vapor wall loss. The VBS_WLS generally shows the best performance for predicting OA among all OA schemes and reduces the mean fractional bias from −72.9 % (VBS_BASE) to −1.6 % for the winter OA. In Europe, the VBS_WLS produces the highest domain average OA in winter (2.3 µg m−3), which is 106.6 % and 26.2 % higher than VBS_BASE and VBS_noWLS, respectively. Compared to VBS_noWLS, VBS_WLS leads to an increase in SOA by up to ∼80 % (in the Balkans). VBS_WLS also leads to better agreement between the modeled SOA fraction in OA (fSOA) and the estimated values in the literature. The substantial influence of vapor wall loss correction on modeled OA in Europe highlights the importance of further improvements in parameterizations based on laboratory studies for a wider range of chamber conditions and field observations with higher spatial and temporal coverage.


Sign in / Sign up

Export Citation Format

Share Document