voc emission
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 40)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Netsai Margareth Mhlanga ◽  
Alex M. Murphy ◽  
Francis O. Wamonje ◽  
Nik J. Cunniffe ◽  
John C. Caulfield ◽  
...  

Cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum L.) plants emit volatile organic compounds (VOCs) attractive to bumblebees (Bombus terrestris L.), which are important tomato pollinators, but which do not transmit CMV. We investigated if this effect was unique to the tomato-CMV pathosystem. In two bean (Phaseolus vulgaris L.) cultivars, infection with the potyviruses bean common mosaic virus (BCMV) or bean common mosaic necrosis virus (BCMNV), or with the cucumovirus CMV induced quantitative changes in VOC emission detectable by coupled gas chromatography–mass spectrometry. In free-choice olfactometry assays bumblebees showed an innate preference for VOC blends emitted by virus-infected non-flowering bean plants and flowering CMV-infected bean plants, over VOCs emitted by non-infected plants. Bumblebees also preferred VOCs of flowering BCMV-infected plants of the Wairimu cultivar over non-infected plants, but the preference was not significant for BCMV-infected plants of the Dubbele witte cultivar. Bumblebees did not show a significant preference for VOCs from BCMNV-infected flowering bean plants but differential conditioning olfactometric assays showed that bumblebees do perceive differences between VOC blends emitted by flowering BCMNV-infected plants over non-infected plants. These results are consistent with the concept that increased pollinator attraction may be a virus-to-host payback, and show that virus-induced changes in bee-attracting VOC emission is not unique to one virus-host combination.


2021 ◽  
Vol 107 ◽  
pp. 38-48
Author(s):  
Di Wang ◽  
Xuan Li ◽  
Xinmin Zhang ◽  
Wenjuan Zhao ◽  
Weiqi Zhang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4258
Author(s):  
Christelle Lemaitre-Guillier ◽  
Christelle Dufresne ◽  
Agnès Chartier ◽  
Stéphanie Cluzet ◽  
Josep Valls ◽  
...  

Grapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid® was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene α-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli®, Romeo®, Bion®, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 530
Author(s):  
Xiurui Guo ◽  
Yaqian Shen ◽  
Wenwen Liu ◽  
Dongsheng Chen ◽  
Junfang Liu

The study of industrial volatile organic compound (VOC) emission inventories is essential for identifying VOC emission levels and distribution. This paper established an industrial VOC emission inventory in 2015 for Hebei Province and completed an emission projection for the period 2020–2030. The results indicated that the total emissions of industrial VOCs in 2015 were 1017.79 kt. The use of VOC products accounted for more than half of the total. In addition, the spatial distribution characteristics of the industrial VOC emissions were determined using a geographic information statistics system (GIS), which showed that the VOCs were mainly distributed the central and southern regions of Hebei. Considering the future economic development trends, population changes, related environmental laws and regulations, and pollution control technology, three scenarios were defined for forecasting the industrial VOC emissions in future years. This demonstrated that industrial VOC emissions in Hebei would amount to 1448.94 kt and 2203.66 kt in 2020 and 2030, with growth rates of 42.36% and 116.51% compared with 2015, respectively. If all industrial enterprises took the control measures, the VOC emissions could be reduced by 69% in 2030. The analysis of the scenarios found that the most effective action plan was to take the best available control technologies and clean production in key industries, including the chemical medicine, coke production, mechanical equipment manufacturing, organic chemical, packaging and printing, wood adhesive, industrial and construction dye, furniture manufacturing, transportation equipment manufacturing, and crude oil processing industries.


2021 ◽  
Vol 163 (A1) ◽  
pp. 1-16
Author(s):  
S S Virdi ◽  
L Y Lee ◽  
C Li ◽  
A K Dev

“Volatile Organic Compounds” (VOCs) are known to contribute significantly to environmental pollution. Crude oil loading operations in a marine oil tanker produces a significant quantity of hydrocarbon (HC) vapours in the surrounding atmosphere. A large percentage of these HC vapour emission consists of ‘Volatile Organic Compounds’ (VOCs). This VOC emission has not been previously analysed in detail to understand health and environmental impact. The scope of the study reported in this paper demonstrates the use of chemical processing simulation software (Aspen HYSYS ®) to model and identify significant VOCs in this HC vapour emission during crude oil loading operations. The objective is to determine the detailed variation in the volume and the composition of the HC vapour emission and hence, VOCs, as the level in a ship's tank rises while being filled and the influence of crude oil temperature and pressure in the filled tank has on the extent of VOC emission. Total VOC emission per tonne of crude oil is calculated and compared with other similar field measurements. The analysis identifies the concentration of toxic VOCs in the hydrocarbon emission, as well as the liquid fraction lost in the loading operation. The simulation data is analysed for crude oil temperature between 10°C to 45°C and tank level from empty to 90% full. The resulting information is useful to assess the environmental and health impact and efficiency of the current crude oil loading operations. Potential to recover the monetary loss by increasing tank pressure and installation of the 'VOC Recovery Unit' is analysed.


2021 ◽  
pp. 45-50
Author(s):  
Eduardo Torre-Pascual ◽  
Estibaliz Sáez de Cámara ◽  
Gotzon Gangoiti ◽  
Iñaki Zuazo

Sign in / Sign up

Export Citation Format

Share Document