scholarly journals Contrasting impacts of two types of El Niño events on winter haze days in China's Jing-Jin-Ji region

2020 ◽  
Author(s):  
Xiaochao Yu ◽  
Zhili Wang ◽  
Hua Zhang ◽  
Jianjun He ◽  
Ying Li

Abstract. El Niño is a complex system with diverse distribution features and intensities. The regional climate anomalies caused by different types of El Niño event likely lead to various impacts on winter haze pollution in China. Based on long-term site observations of haze days in China from 1961 to 2013, this study explores the effects of Eastern Pacific (EP) and Central Pacific (CP) types of El Niño event on winter haze days (WHD) in China's Jing-Jin-Ji (JJJ) region and the physical mechanisms underlying WHD changes. The results show statistically significant positive and negative correlations, respectively, between WHD in the JJJ region and EP and CP El Niño events. At most sites in the JJJ region, the average WHD are increased in all EP El Niño years, with the maximum change exceeding 2.0 days. Meanwhile the average WHD are decreased at almost all stations over this region in all CP El Niño years, with the largest change being more than −2.0 days. The changes in large-scale circulations indicate obviously positive surface air temperature (SAT) anomalies and negative sea level pressure (SLP) anomalies over North China, and southerly wind anomalies at the mid-low troposphere over eastern China in the winters of EP El Niño years. These anomalies are conducive to increases in WHD in the JJJ region. However, there are significant northerly and northwesterly wind anomalies at the mid-low troposphere over eastern China, and stronger and wider precipitation anomalies in the winters of CP El Niño years, which contribute to decreased WHD over the JJJ region. Changes in local synoptic conditions indicate negative SLP anomalies, positive SAT anomalies, and weakened northerly winds over the JJJ region in the winters of EP El Niño years. The occurrence frequency of circulation types conducive to the accumulation (diffusion) of aerosol pollutants is increased (decreased) by 0.4 % (0.37 %) in those winters. However, the corresponding frequency is decreased (increased) by 0.54 % (0.56 %) in the winters of CP El Niño years. Our study highlights the importance of distinguishing the impacts of two types of El Niño events on winter haze pollution in China's JJJ region.

2020 ◽  
Vol 20 (17) ◽  
pp. 10279-10293
Author(s):  
Xiaochao Yu ◽  
Zhili Wang ◽  
Hua Zhang ◽  
Jianjun He ◽  
Ying Li

Abstract. El Niño events differ widely in their patterns and intensities. The regional climate anomalies caused by different types of El Niño events likely lead to various impacts on winter haze pollution in China. Based on long-term site observations of haze days in China from 1961 to 2013, this study explores the effects of eastern Pacific (EP) and central Pacific (CP) types of El Niño events on the number of winter haze days (WHDs) in China's Jing-Jin-Ji (JJJ) region and the physical mechanisms underlying WHD changes. The results show statistically significant positive and negative correlations, respectively, between WHDs in the JJJ region and EP and CP El Niño events. At most sites in the JJJ region, the average WHD increased in all EP El Niño years, with the maximum change exceeding 2.0 d. Meanwhile, the average WHD decreased at almost all stations over this region in all CP El Niño years, with the largest change being more than −2.0 d. The changes in large-scale circulations indicate obvious positive surface air temperature (SAT) anomalies and negative sea level pressure (SLP) anomalies over North China, as well as southerly wind anomalies at the middle to low troposphere over eastern China in the winters of EP El Niño years. These anomalies are conducive to increases in WHDs in the JJJ region. However, there are significant northerly and northwesterly wind anomalies at the middle to low troposphere over eastern China, as well as stronger and wider precipitation anomalies in the winters of CP El Niño years, which contribute to decreased WHDs over the JJJ region. Changes in local synoptic conditions indicate negative SLP anomalies, positive SAT anomalies, and weakened northerly winds over the JJJ region in the winters of EP El Niño years. The total occurrence frequency of circulation types conducive to the accumulation (diffusion) of aerosol pollutants is increased (decreased) by 0.4 % (0.2 %) in those winters. However, the corresponding frequency is decreased (increased) by 0.5 % (0.6 %) in the winters of CP El Niño years. Our study highlights the importance of distinguishing the impacts of these two types of El Niño events on winter haze pollution in China's JJJ region.


2017 ◽  
Vol 30 (4) ◽  
pp. 1397-1415 ◽  
Author(s):  
Pang-Chi Hsu ◽  
Ting Xiao

Abstract The influences of different types of Pacific warming, often classified as the eastern Pacific (EP) and central Pacific (CP) El Niño events, on Madden–Julian oscillation (MJO) activity over the Indian Ocean were investigated. Accompanied by relatively unstable (stable) atmospheric stratification induced by enhanced (reduced) moisture and moist static energy (MSE) in the lower troposphere, strengthened (weakened) MJO convection was observed in the initiation and eastward-propagation stages during CP (EP) El Niño events. To examine the key processes resulting in the differences in low-level moistening and column MSE anomalies over the Indian Ocean associated with the two types of El Niño, the moisture and column MSE budget equations were diagnosed using the reanalysis dataset ERA-Interim. The results indicate that the enhanced horizontal advection in the CP El Niño years plays an important role in causing a larger moisture and MSE growth rate over the MJO initiation area during CP El Niño events than during EP El Niño events. The increases in horizontal moisture and MSE advection primarily result from advection by mean flow across the enhanced intraseasonal moisture and MSE gradient, as well as by intraseasonal circulation across the mean moisture and MSE gradient associated with the CP El Niño. In the eastward development stage, the enhanced preconditioning comes from positive moisture and MSE advection anomalies in the CP El Niño events. Meanwhile, the strengthened MJO-related convection over the central-eastern Indian Ocean is maintained by increased atmospheric radiative heating and surface latent heat flux during the CP El Niño compared to the EP El Niño events.


2015 ◽  
Vol 12 (9) ◽  
pp. 8977-9002
Author(s):  
T. Tang ◽  
W. Li ◽  
G. Sun

Abstract. The responses of river runoff to shifts of large-scale climatic patterns are of increasing concerns to water resource planners and managers for long-term climate change adaptation. El Niño is one of the most dominant modes of climate variability that is closely linked to hydrologic extremes such as floods and droughts that cause great loss of lives and properties. However, the different impacts of the two types of El Niño-Central Pacific (CP) and Eastern Pacific (EP)-El Niño on runoff across the conterminous US (CONUS) are not well understood. This study characterizes the impacts of the CP- and EP-El Niño on seasonal and annual runoff using observed historical streamflow data from 658 reference gaging stations and NCAR-CCSM4 model. We found that surface runoff responds similarly to the two types of El Niño events in Southeast, Central, South and Western coastal regions, but differently in Northeast (NE), Pacific Northwest (PNW) and West North Central (WNC) climatic zones. Specifically, EP-El Niño events tend to bring above-average runoff in NE, WNC, and PNW throughout the year while CP-El Niño events cause below-than normal runoff in the three regions. Similar findings were also found by analyzing NCAR-CCSM4 model outputs that captured both the CP- and EP-El Niño events representing the best datasets among selected CMIP5 models. The CCSM4 model simulates lower runoff values during CP-El Niño years than those in EP-El Niño in all of the three climatic regions (NE, PNW and WNC) during 1950–1999. In the future (2050–2099), for both types of El Niño years, runoff is projected to increase over the NE and PNW regions, mainly due to increased precipitation (P). In contrast, the increase of future evapotranspiration (ET) is higher than that of future P, leading to a projected decrease in runoff over the WNC region. In addition, model analysis indicates that all of the three regions (NE, PNW and WNC) are projected to have lower runoff values during CP-El Niño years than EP-El Niño. Our study suggests that US water resources may be distributed more unevenly in space and time with more frequent and intense flood and drought events. The findings from this study have important implications to water resource management at the regional scale. Information generated from this study is useful for water resource planners to anticipate the influence of two different types of El Niño events on droughts and floods across the CONUS.


2021 ◽  
Vol 21 (13) ◽  
pp. 10745-10761
Author(s):  
Liangying Zeng ◽  
Yang Yang ◽  
Hailong Wang ◽  
Jing Wang ◽  
Jing Li ◽  
...  

Abstract. El Niño–Southern Oscillation (ENSO), a phenomenon of periodic changes in sea surface temperature in the equatorial central-eastern Pacific Ocean, is the strongest signal of interannual variability in the climate system with a quasi-period of 2–7 years. El Niño events have been shown to have important influences on meteorological conditions in China. In this study, the impacts of El Niño with different durations on aerosol concentrations and haze days during December–January–February (DJF) in China are quantitatively examined using the state-of-the-art Energy Exascale Earth System Model version 1 (E3SMv1). We find that PM2.5 concentrations are increased by 1–2 µg m−3 in northeastern and southern China and decreased by up to 2.4 µg m−3 in central-eastern China during El Niño events relative to the climatological means. Compared to long-duration (LD) El Niño events, El Niño with short duration (SD) but strong intensity causes northerly wind anomalies over central-eastern China, which is favorable for aerosol dispersion over this region. Moreover, the anomalous southeasterly winds weaken the wintertime prevailing northwesterly in northeastern China and facilitate aerosol transport from southern and southeast Asia, enhancing aerosol increase in northeastern China during SD El Niño events relative to LD El Niño events. In addition, the modulation effect on haze days by SD El Niño events is 2–3 times more than that by LD El Niño events in China. The aerosol variations during El Niño events are mainly controlled by anomalous aerosol accumulation/dispersion and transport due to changes in atmospheric circulation, while El Niño-induced precipitation change has little effect. The occurrence frequency of SD El Niño events has been increasing significantly in recent decades, especially after the 1940s, suggesting that El Niño with short duration has exerted an increasingly intense modulation on aerosol pollution in China over the past few decades.


2017 ◽  
Vol 30 (12) ◽  
pp. 4351-4371 ◽  
Author(s):  
N. Calvo ◽  
M. Iza ◽  
M. M. Hurwitz ◽  
E. Manzini ◽  
C. Peña-Ortiz ◽  
...  

The Northern Hemisphere (NH) stratospheric signals of eastern Pacific (EP) and central Pacific (CP) El Niño events are investigated in stratosphere-resolving historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the role of the stratosphere in driving tropospheric El Niño teleconnections in NH climate. The large number of events in each composite addresses some of the previously reported concerns related to the short observational record. The results shown here highlight the importance of the seasonal evolution of the NH stratospheric signals for understanding the EP and CP surface impacts. CMIP5 models show a significantly warmer and weaker polar vortex during EP El Niño. No significant polar stratospheric response is found during CP El Niño. This is a result of differences in the timing of the intensification of the climatological wavenumber 1 through constructive interference, which occurs earlier in EP than CP events, related to the anomalous enhancement and earlier development of the Pacific–North American pattern in EP events. The northward extension of the Aleutian low and the stronger and eastward location of the high over eastern Canada during EP events are key in explaining the differences in upward wave propagation between the two types of El Niño. The influence of the polar stratosphere in driving tropospheric anomalies in the North Atlantic European region is clearly shown during EP El Niño events, facilitated by the occurrence of stratospheric summer warmings, the frequency of which is significantly higher in this case. In contrast, CMIP5 results do not support a stratospheric pathway for a remote influence of CP events on NH teleconnections.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Carlos Conejero ◽  
Boris Dewitte ◽  
Véronique Garçon ◽  
Joël Sudre ◽  
Ivonne Montes

Abstract Transient mesoscale oceanic eddies in Eastern Boundary Upwelling Systems are thought to strongly affect key regional scale processes such as ocean heat transport, coastal upwelling and productivity. Understanding how these can be modulated at low-frequency is thus critical to infer their role in the climate system. Here we use 26 years of satellite altimeter data and regional oceanic modeling to investigate the modulation of eddy kinetic energy (EKE) off Peru and Chile by ENSO, the main mode of natural variability in the tropical Pacific. We show that EKE tends to increase during strong Eastern Pacific (EP) El Niño events along the Peruvian coast up to northern Chile and decreases off central Chile, while it is hardly changed during Central Pacific El Niño and La Niña events. However the magnitude of the EKE changes during strong EP El Niño events is not proportional to their strength, with in particular the 1972/1973 El Niño event standing out as an extreme event in terms of EKE increase off Peru reaching an amplitude three times as large as that during the 1997/1998 El Niño event, and the 2015/2016 El Niño having instead a weak impact on EKE. This produces decadal changes in EKE, with a similar pattern than that of strong EP El Niño events, resulting in a significant negative (positive) long-term trend off Peru (central Chile).


2016 ◽  
Vol 20 (1) ◽  
pp. 27-37 ◽  
Author(s):  
T. Tang ◽  
W. Li ◽  
G. Sun

Abstract. The responses of river runoff to shifts of large-scale climatic patterns are of increasing concerns to water resource planners and managers for long-term climate change adaptation. El Niño, as one of the most dominant modes of climate variability, is closely linked to hydrologic extremes such as floods and droughts that cause great loss of lives and properties. However, the different impacts of the two types of El Niño, i.e., central Pacific (CP-) and eastern Pacific (EP-)El Niño, on runoff across the conterminous US (CONUS) are not well understood. This study characterizes the impacts of the CP- and EP-El Niño on seasonal and annual runoff using observed streamflow data from 658 reference gaging stations and the NCAR-CCSM4 model. We found that surface runoff responds similarly to the two types of El Niño events in southeastern, central, southern, and western coastal regions, but differently in northeast (NE), Pacific northwest (PNW) and west north central (WNC) climatic zones. Specifically, EP-El Niño events tend to bring above-average runoff in NE, WNC, and PNW throughout the year while CP-El Niño events cause below-than normal runoff in the three regions. Similar findings were also found by analyzing NCAR-CCSM4 model outputs that captured both the CP- and EP-El Niño events, representing the best data set among CMIP5 models. The CCSM4 model simulates lower runoff values during CP-El Niño years than those in EP-El Niño over all of the three climatic regions (NE, PNW, and WNC) during 1950–1999. In the future (2050–2099), for both types of El Niño years, runoff is projected to increase over the NE and PNW regions, mainly due to increased precipitation (P). In contrast, the increase of future evapotranspiration (ET) exceeds that of future P, leading to a projected decrease in runoff over the WNC region. In addition, model analysis indicates that all of the three regions (NE, PNW, and WNC) are projected to have lower runoff in CP-El Niño years than in EP-El Niño years. Our study suggests that the US water resources may be distributed more unevenly in space and time with more frequent and intense flood and drought events. The findings from this study have important implications to water resource management at regional scales. Information generated from this study may help water resource planners to anticipate the influence of two different types of El Niño events on droughts and floods across the CONUS.


2021 ◽  
Author(s):  
Liangying Zeng ◽  
Yang Yang ◽  
Hailong Wang ◽  
Jing Wang ◽  
Jing Li ◽  
...  

Abstract. El Niño-Southern Oscillation (ENSO), a phenomenon of periodic changes in sea surface temperature in the equatorial central eastern Pacific Ocean, is the strongest signal of interannual variability in the climate system with a quasi-period of 2–7 years. El Niño events have been shown to have important influences on meteorological conditions in China. In this study, the impacts of El Niño with different durations on aerosol concentrations and haze days during December-January-February (DJF) in China are quantitatively examined using the state-of-the-science Energy Exascale Earth System Model version 1 (E3SMv1). We find that PM2.5 concentrations are increased by 1–2 µg m−3 in the northeastern and southern China and decreased by up to 2.4 µg m−3 in central-eastern China during El Niño events relative to the climatological means. Compared to long duration (LD) El Niño events, El Niño with short duration (SD) but strong intensity causes northerly wind anomalies over central-eastern China, which is favorable for aerosol dispersion over this region. Moreover, the anomalous southeasterly winds weaken the wintertime prevailing northwesterly in northeastern China and facilitate aerosol transport from South and Southeast Asia, enhancing aerosol increase in northeastern China during SD El Niño events relative to LD El Niño events. In addition, the modulation on haze days by SD El Niño events is 2–3 times more than that by LD El Niño events in China. The aerosol variations during El Niño events are mainly controlled by anomalous aerosol accumulation/dispersion and transport due to changes in atmospheric circulation, while El Niño-induced precipitation change has little effect. The occurrence frequency of SD El Niño events has been increasing significantly in recent decades, especially after 1940s, suggesting that El Niño with short duration have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.


2018 ◽  
Vol 31 (24) ◽  
pp. 9869-9879 ◽  
Author(s):  
Jianping Duan ◽  
Lun Li ◽  
Zhuguo Ma ◽  
Jan Esper ◽  
Ulf Büntgen ◽  
...  

Large volcanic eruptions may cause abrupt summer cooling over large parts of the globe. However, no comparable imprint has been found on the Tibetan Plateau (TP). Here, we introduce a 400-yr-long temperature-sensitive network of 17 tree-ring maximum latewood density sites from the TP that demonstrates that the effects of tropical eruptions on the TP are generally greater than those of extratropical eruptions. Moreover, we found that large tropical eruptions accompanied by subsequent El Niño events caused less summer cooling than those that occurred without El Niño association. Superposed epoch analysis (SEA) based on 27 events, including 14 tropical eruptions and 13 extratropical eruptions, shows that the summer cooling driven by extratropical eruptions is insignificant on the TP, while significant summer temperature decreases occur subsequent to tropical eruptions. Further analysis of the TP August–September temperature responses reveals a significant postvolcanic cooling only when no El Niño event occurred. However, there is no such cooling for all other situations, that is, tropical eruptions together with a subsequent El Niño event, as well as extratropical eruptions regardless of the occurrence of an El Niño event. The averaged August–September temperature deviation ( Tdev) following 10 large tropical eruptions without a subsequent El Niño event is up to −0.48° ± 0.19°C (with respect to the preceding 5-yr mean), whereas the temperature deviation following 4 large tropical eruptions with an El Niño association is approximately 0.23° ± 0.16°C. These results indicate a mitigation effect of El Niño events on the TP temperature response to large tropical eruptions. The possible mechanism is that El Niño events can weaken the Indian summer monsoon with a subsequent decrease in rainfall and cooling effect, which may lead to a relatively high temperature on the TP, one of the regions affected by the Indian summer monsoon.


2020 ◽  
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) Central–Pacific (CP) and (ii) Eastern–Pacific (EP). Both types of El Nino are characterised by above average sea surface temperature anomalies in the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability, as well as different lags in terrestrial CO2 release to the atmosphere following increased tropical near surface air temperature. We employ the dynamic global vegetation model LPJ–GUESS within a synthetic experimental framework to examine the sensitivity and potential long term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the later half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was negligible for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document