scholarly journals Morphology, mixing state, and hygroscopicity of primary biological aerosol particles from a Chinese boreal forest

Author(s):  
Weijun Li ◽  
Lei Liu ◽  
Qi Yuan ◽  
Liang Xu ◽  
Yanhong Zhu ◽  
...  

Abstract. Biological aerosols play an important role in atmospheric chemistry, clouds, climate, and public health. Here, we studied the morphology and composition of primary biological aerosol particles (PBAPs) collected in the Lesser Khingan Mountain boreal forest of China in summertime using transmission electron microscopy and scanning electron microscopy. Of all detected particles > 100 nm in diameter, 13 % by number were identified as PBAPs. In addition, 57 % of the PBAPs were identified as bacteria, followed by brochosomes (24 %) and fungi (19 %). The dominant size of bacteria was 1–4 μm, fungi was 2–4 μm, and brochosomes was 300–500 nm. The number size distribution of PBAPs coupled with the mass concentrations of PM2.5 and PM10 were used to estimate the total mass concentration of PBAPs, which is approximately 1.9 μg m−3 and accounts for 47 % of the in situ PM2.5–10 mass. C, N, O, P, K, and Si are detected in all PBAP particles, and P represented a major marker to identify PBAPs. Moreover, there is a higher frequency and concentration of PBAPs at night compared with day. Bacterial and fungal particles displayed weak hygroscopicity with a growth factor of ~ 1.09 at RH = 94 %. Electron microscopy shows that approximately 20 % of the bacterial particles were internally mixed with metal, mineral dust, and inorganic salts in the boreal forest air. This work provides a database for both further understanding physicochemical state of individual PBAP particles from natural sources and expanding the scope of atmospheric implications.

2020 ◽  
Author(s):  
Kouji Adachi ◽  
Naga Oshima ◽  
Zhaoheng Gong ◽  
Suzane de Sá ◽  
Adam P. Bateman ◽  
...  

Abstract. The Amazon basin is important for understanding the global climate both because of its carbon cycle and as a laboratory for obtaining basic knowledge of the continental background atmosphere. Aerosol particles play an important role in the climate and weather, and knowledge of their compositions and mixing states is necessary to understand their influence on the climate. For this study, we collected aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaign (February to March 2014) at the T3 site, which locates about 70 km from Manaus, and analyzed using transmission electron microscopy (TEM). TEM has better spatial resolution than other instruments, which enables us to analyse the occurrences of components that attach to or are embedded within other particles. Based on the TEM results of more than 10,000 particles from several transport events, this study shows the occurrences of individual particles including compositions, size distributions, number fractions, and possible sources of materials that mix with other particles. Aerosol particles during the wet season were from both natural sources such as the Amazon forest, Saharan desert, Atlantic Ocean, and African biomass burning and anthropogenic sources such as Manaus and local emissions. These particles mix together at an individual particle scale. The number fractions of mineral dust and sea-salt particles increased almost three-fold when long-range transport (LRT) from the African continent occurred. Nearly 20 % of mineral dust and primary biological aerosol particles attached sea salts on their surfaces. Sulfates were also internally mixed with sea-salt and mineral dust particles. The TEM element mapping images showed that several components with sizes of hundreds of nanometres from different sources commonly occur within individual LRT aerosol particles. We conclude that many aerosol particles from natural sources change their compositions by mixing during transport. The compositions and mixing states of these particles after emission result in changes in their hygroscopic and optical properties and should be considered when assessing their effects on climate.


2013 ◽  
Vol 6 (3) ◽  
pp. 777-785 ◽  
Author(s):  
W. Reid ◽  
P. Achtert ◽  
N. Ivchenko ◽  
P. Magnusson ◽  
T. Kuremyr ◽  
...  

Abstract. A technique for collecting aerosol particles between altitudes of 17 and 85 km is described. Spin-stabilized collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Collection samples are exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy will give size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization will ensure that each probe can be located and recovered for post-flight analysis.


2021 ◽  
Author(s):  
Anastasiia Demakova ◽  
Olga Garmash ◽  
Ekaterina Ezhova ◽  
Mikhail Arshinov ◽  
Denis Davydov ◽  
...  

<p>New Particle Formation (NPF) is a process in which a large number of particles is formed in the atmosphere via gas-to-particle conversion. Previous research shows the important role of formation of new particles for atmosphere, clouds and climate (Kerminen, V.-M. et al. 2018).</p><p>              There exist measurements from different parts of the world which show that NPF is happening worldwide (Kerminen, V.-M. et al. 2018). Measurements at SMEAR II station in Hyytiälä, Finland (Hari P. and Kulmala M., 2005), show that NPF is a common process in Finland’s boreal forests. However, measurements at Zotto station in Siberia, Russia, show that NPF events are very rare in that area (Wiedensohler A. et al., 2018). Measurements in Siberian boreal forests are sparse. We have conducted new measurements at Fonovaya station near Tomsk (Siberia, Russia) using Neutral cluster Air Ion Spectrometer (NAIS), Particle Size Magnifier (PSM), Differential Mobility Particle Sizer (DMPS) and the Atmospheric Pressure interface Time-Of-Flight mass spectrometer (APi-TOF). Those instruments measure aerosol particle number size distribution (NAIS, DMPS), ion number size distribution (NAIS), size distribution of small particles (PSM) and chemical composition of aerosol particles (APi-TOF). The novelty of this work is that such complex measurements have not been done in Siberia before.</p><p>              Here we report the first results of our research on NPF phenomenon in Siberian boreal forest. We present detailed statistics of NPF events, as well as formation rates (J) and growth rates (GR) of aerosol particles. The results from Fonovaya station are compared with those from SMEAR II station and from SMEAR Estonia station in Järvselja, Estonia.</p><p>               </p><p> </p><p> </p><p>Literature</p><ul><li>[1] Kerminen V.-M. et al. “Atmospheric new particle formation and growth: review of field observations”. In: Environmental Research Letters 10 (2018), p. 103003.</li> <li>[2] Wiedensohler A. et al. “Infrequent new particle formation over the remote boreal forest of Siberia”. In: Atmospheric Environment 200 (2019), pp. 167–169.</li> <li>[3] Dada L. et al. “Long-term analysis of clear-sky new particle formation events and nonevents in Hyytiälä”. In: Atmospheric Chemistry and Physics 10 (2017), pp. 6227–6241.</li> </ul><p> </p>


2012 ◽  
Vol 5 (6) ◽  
pp. 8161-8187
Author(s):  
W. Reid ◽  
P. Achtert ◽  
N. Ivchenko ◽  
P. Magnusson ◽  
T. Kuremyr ◽  
...  

Abstract. A technique for collecting aerosol particles between altitudes of 85 and 17 km is described. Collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Each collection sample is exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy gives size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization ensure that each probe can be located and recovered for post-flight analysis.


2017 ◽  
Vol 52 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Kouji Adachi ◽  
Arthur J. Sedlacek ◽  
Lawrence Kleinman ◽  
Duli Chand ◽  
John M. Hubbe ◽  
...  

Author(s):  
Karen A. Katrinak ◽  
Peter Rez ◽  
Paul R. Perkes ◽  
Peter R. Buseck

Carbonaceous aggregates collected from the aerosol of Phoenix, Arizona have an irregular branched morphology. The aggregates resemble combustion soots and were probably emitted by motor vehicles. Fractal analysis provides a means of quantifying morphologic variations among aggregates and relating these variations to mechanisms of formation. Bright-field transmission electron microscope (TEM) images of 38 individual aggregates were recorded on negatives at magnifications of 15,000 to 200,000. The aggregates have maximum lengths ranging from 0.21 to 2.61 μm and are composed of interconnected spherules, each averaging 26 nm in diameter. The number of spherules in each aggregate ranges from 32 to 1842; the average number is 551. “The nesting squares” method of fractal analysis was applied to digital binary images to calculate the fractal dimension (D) of each aggregate.


Sign in / Sign up

Export Citation Format

Share Document