scholarly journals Supplementary material to "Anthropogenic and natural controls on atmospheric <i>δ</i><sup>13</sup>C-CO<sub>2</sub> variations in the Yangtze River Delta: Insights from a carbon isotope modeling framework"

Author(s):  
Cheng Hu ◽  
Jiaping Xu ◽  
Cheng Liu ◽  
Yan Chen ◽  
Dong Yang ◽  
...  
2020 ◽  
Author(s):  
Cheng Hu ◽  
Jiaping Xu ◽  
Cheng Liu ◽  
Yan Chen ◽  
Dong Yang ◽  
...  

Abstract. The atmospheric CO2 mixing ratio and its δ13C-CO2 composition contain important CO2 sink and source information spanning from ecosystem to global scales. The observation and simulation for both CO2 and its carbon isotope ratio (δ13C-CO2) can be used to constrain regional emissions and better understand the anthropogenic and natural mechanisms that control δ13C-CO2 variations. Such work remains rare for urban environments, especially megacities. Here, we used near-continuous CO2 and δ13C-CO2 measurements, from September 2013 to August 2015, and inverse modeling to constrain the CO2 budget and investigate the main factors that dominated δ13C-CO2 variations for the Yangtze River Delta (YRD) region, one of the largest anthropogenic CO2 hotspots and densely populated regions in China. We used the WRF-STILT model framework with category-specified EDGAR v432 CO2 inventories to simulate hourly CO2 mixing ratios and δ13C-CO2, evaluated these simulations with observations, and constrained the anthropogenic CO2 emission categories. Our study shows that: (1) Top-down and bottom-up estimates of anthropogenic CO2 emissions agreed well (bias 


2021 ◽  
Vol 21 (13) ◽  
pp. 10015-10037
Author(s):  
Cheng Hu ◽  
Jiaping Xu ◽  
Cheng Liu ◽  
Yan Chen ◽  
Dong Yang ◽  
...  

Abstract. The atmospheric carbon dioxide (CO2) mixing ratio and its carbon isotope (δ13C-CO2) composition contain important CO2 sink and source information spanning from ecosystem to global scales. The observation and simulation for both CO2 and δ13C-CO2 can be used to constrain regional emissions and better understand the anthropogenic and natural mechanisms that control δ13C-CO2 variations. Such work remains rare for urban environments, especially megacities. Here, we used near-continuous CO2 and δ13C-CO2 measurements, from September 2013 to August 2015, and inverse modeling to constrain the CO2 budget and investigate the main factors that dominated δ13C-CO2 variations for the Yangtze River delta (YRD) region, one of the largest anthropogenic CO2 hotspots and densely populated regions in China. We used the WRF-STILT model framework with category-specified EDGAR v4.3.2 CO2 inventories to simulate hourly CO2 mixing ratios and δ13C-CO2, evaluated these simulations with observations, and constrained the total anthropogenic CO2 emission. We show that (1) top-down and bottom-up estimates of anthropogenic CO2 emissions agreed well (bias < 6 %) on an annual basis, (2) the WRF-STILT model can generally reproduce the observed diel and seasonal atmospheric δ13C-CO2 variations, and (3) anthropogenic CO2 emissions played a much larger role than ecosystems in controlling the δ13C-CO2 seasonality. When excluding ecosystem respiration and photosynthetic discrimination in the YRD area, δ13C-CO2 seasonality increased from 1.53 ‰ to 1.66 ‰. (4) Atmospheric transport processes in summer amplified the cement CO2 enhancement proportions in the YRD area, which dominated monthly δs (the mixture of δ13C-CO2 from all regional end-members) variations. These findings show that the combination of long-term atmospheric carbon isotope observations and inverse modeling can provide a powerful constraint on the carbon cycle of these complex megacities.


Sign in / Sign up

Export Citation Format

Share Document