scholarly journals Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India

2020 ◽  
Author(s):  
Gareth J. Stewart ◽  
Beth S. Nelson ◽  
W. Joe F. Acton ◽  
Adam R. Vaughan ◽  
Naomi J. Farren ◽  
...  

Abstract. Biomass burning emits significant quantities of intermediate-volatility and semi-volatile volatile organic compounds (I/SVOCs) in a complex mixture, probably containing many thousands of chemical species. These components are significantly more toxic and have poorly understood chemistry compared to volatile organic compounds routinely analysed in ambient air, however quantification of I/SVOCs presents a difficult analytical challenge. The gases and particles emitted during the test combustion of a range of domestic solid fuels collected from across New Delhi were sampled and analysed. Organic aerosol was collected onto Teflon (PTFE) filters and residual low-volatility gases were adsorbed to the surface of solid-phase extraction (SPE) disks. A new method relying on accelerated solvent extraction (ASE) coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToF-MS) was developed. This highly sensitive and powerful analytical technique enabled over 3000 peaks from I/SVOC species with unique mass spectra to be detected. 15–100 % of gas-phase emissions and 7–100 % of particle-phase emissions were characterised. The method was analysed for suitability to make quantitative measurements of I/SVOCs using SPE disks. Analysis of SPE disks indicated phenolic and furanic compounds were important to gas-phase I/SVOC emissions and levoglucosan to the aerosol phase. Gas- and particle-phase emission factors for 21 polycyclic aromatic hydrocarbons (PAHs) were derived, including 16 compounds listed by the US EPA as priority pollutants. Gas-phase emissions were dominated by smaller PAHs. New emission factors were measured (mg kg−1) for PAHs from combustion of cow dung cake (615), municipal solid waste (1022), crop residue (747), sawdust (1236), fuel wood (247), charcoal (151) and liquified petroleum gas (56). The results of this study indicate that cow dung cake and municipal solid waste burning are likely to be significant PAH sources and further study is required to quantify their impact, alongside emissions from fuel wood burning.

2021 ◽  
Vol 21 (4) ◽  
pp. 2407-2426 ◽  
Author(s):  
Gareth J. Stewart ◽  
Beth S. Nelson ◽  
W. Joe F. Acton ◽  
Adam R. Vaughan ◽  
Naomi J. Farren ◽  
...  

Abstract. Biomass burning emits significant quantities of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) in a complex mixture, probably containing many thousands of chemical species. These components are significantly more toxic and have poorly understood chemistry compared to volatile organic compounds routinely quantified in ambient air; however, analysis of I/SVOCs presents a difficult analytical challenge. The gases and particles emitted during the test combustion of a range of domestic solid fuels collected from across Delhi were sampled and analysed. Organic aerosol was collected onto Teflon (PTFE) filters, and residual low-volatility gases were adsorbed to the surface of solid-phase extraction (SPE) discs. A new method relying on accelerated solvent extraction (ASE) coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC–ToF-MS) was developed. This highly sensitive and powerful analytical technique enabled over 3000 peaks from I/SVOC species with unique mass spectra to be detected. A total of 15 %–100 % of gas-phase emissions and 7 %–100 % of particle-phase emissions were characterised. The method was analysed for suitability to make quantitative measurements of I/SVOCs using SPE discs. Analysis of SPE discs indicated phenolic and furanic compounds were important for gas-phase I/SVOC emissions and levoglucosan to the aerosol phase. Gas- and particle-phase emission factors for 21 polycyclic aromatic hydrocarbons (PAHs) were derived, including 16 compounds listed by the US EPA as priority pollutants. Gas-phase emissions were dominated by smaller PAHs. The new emission factors were measured (mg kg−1) for PAHs from combustion of cow dung cake (615), municipal solid waste (1022), crop residue (747), sawdust (1236), fuelwood (247), charcoal (151) and liquefied petroleum gas (56). The results of this study indicate that cow dung cake and municipal solid waste burning are likely to be significant PAH sources, and further study is required to quantify their impact alongside emissions from fuelwood burning.


1996 ◽  
Vol 34 (7-8) ◽  
pp. 429-436
Author(s):  
F. G. Pohland ◽  
P. Rachdawong

This report focuses on the potential for using waste carpets as part of cover and liner systems at municipal solid waste landfills. Five different carpet materials were tested for their characteristics before and after incorporation with solid wastes in simulated landfill bioreactors. Selected analyses are presented on heavy metals and volatile organic compounds from TCLP extracts, and on leachate and gas samples during operation with and without leachate recycle. Biological clogging tests indicated no alteration in carpet integrity o2r significant reduction in permeability. Solid waste stabilization, indicated by gas and leachate parameters, proceeded without adverse impact from the codisposed carpets. Volatile organic compounds and heavy metals were present in trace amounts and below regulatory limits. These results supported post-consumer use of carpets as filter and separation layers for municipal solid waste landfill cover and liner systems.


2010 ◽  
Vol 22 (5) ◽  
pp. 752-759 ◽  
Author(s):  
Pinjing He ◽  
Jiafu Tang ◽  
Dongqing Zhang ◽  
Yang Zeng ◽  
Liming Shao

Chemosphere ◽  
2005 ◽  
Vol 59 (3) ◽  
pp. 423-430 ◽  
Author(s):  
Paola Pierucci ◽  
Elena Porazzi ◽  
Mercedes Pardo Martinez ◽  
Fabrizio Adani ◽  
Cesare Carati ◽  
...  

2007 ◽  
Vol 25 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Diauddin R Nammari ◽  
Marcia Marques ◽  
William Hogland ◽  
Lennart Mathiasson ◽  
Lars Thörneby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document