scholarly journals Supplementary material to "Total organic carbon and contribution from speciated organics in cloud water: Airborne data analysis from the CAMP<sup>2</sup>Ex field campaign"

Author(s):  
Connor Stahl ◽  
Ewan Crosbie ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Rachel A. Braun ◽  
...  
2021 ◽  
Author(s):  
Connor Stahl ◽  
Ewan Crosbie ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Rachel A. Braun ◽  
...  

Abstract. This work focuses on total organic carbon (TOC) and contributing species in cloud water over Southeast Asia using a rare airborne dataset collected during NASA’s Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex), in which a wide variety of maritime clouds were studied, including cumulus congestus, altocumulus, altostratus, and cumulus. Knowledge of TOC levels and their contributing species is needed for improved modeling of cloud processing of organics and to understand how aerosols and gases impact and are impacted by clouds. This work relies on 159 samples collected with an Axial Cyclone Cloud water Collector at altitudes of 0.2–6.8 km that had sufficient volume for both TOC and speciated organic composition analysis. Species included monocarboxylic acids (glycolate, acetate, formate, and pyruvate), dicarboxylic acids (glutarate, adipate, succinate, maleate, and oxalate), methanesulfonate (MSA), and dimethylamine (DMA). TOC values range between 0.018–13.660 ppm C with a mean of 0.902 ppm C. The highest TOC values are observed below 2 km with a general reduction aloft. An exception is samples impacted by biomass burning for which TOC remains enhanced as high as 6.5 km (7.048 ppm C). Estimated total organic matter derived from TOC contributes a mean of 30.7 % to total measured mass (inorganics + organics). Speciated organics contribute (on carbon mass basis) an average of 30.0 % to TOC in the study region, and account for an average of 10.3 % to total measured mass. The order of the average contribution of species to TOC, in decreasing contribution of carbon mass, is as follows: acetate (14.7 ± 20.5 %), formate (5.4 ± 9.3 %), oxalate (2.8 ± 4.3 %), DMA (1.7 ± 6.3 %), succinate (1.6 ± 2.4 %), pyruvate (1.3 ± 4.5 %), glycolate (1.3 ± 3.7 %), adipate (1.0 ± 3.6 %), MSA (0.1 ± 0.1 %), glutarate (0.1 ± 0.2 %), maleate (< 0.1 ± 0.1 %). Approximately 70 % of TOC remains unaccounted for, thus highlighting the complex nature of organics in the study region; samples collected in biomass burning plumes have up to 95.6 % of unaccounted TOC mass based on the species detected. Consistent with other regions, monocarboxylic acids dominate the speciated organic mass (~75 %) and are about four times in greater abundance than dicarboxylic acids. Samples are categorized into four cases based on back-trajectory history revealing source-independent similarity between the bulk contributions of monocarboxylic and dicarboxylic acids to TOC (16.03 %–23.66 % and 3.70 %–8.75 %, respectively). Furthermore, acetate, formate, succinate, glutarate, pyruvate, oxalate, and MSA are especially enhanced during biomass burning periods, attributed to peat emissions transported from Sumatra and Borneo. Lastly, dust (Ca2+) and sea salt (Na+/Cl−) tracers exhibit strong correlations with speciated organics, thus supporting how coarse aerosol surfaces interact with these water-soluble organics.


2021 ◽  
Vol 21 (18) ◽  
pp. 14109-14129
Author(s):  
Connor Stahl ◽  
Ewan Crosbie ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Rachel A. Braun ◽  
...  

Abstract. This work focuses on total organic carbon (TOC) and contributing species in cloud water over Southeast Asia using a rare airborne dataset collected during NASA's Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex), in which a wide variety of maritime clouds were studied, including cumulus congestus, altocumulus, altostratus, and cumulus. Knowledge of TOC masses and their contributing species is needed for improved modeling of cloud processing of organics and to understand how aerosols and gases impact and are impacted by clouds. This work relies on 159 samples collected with an axial cyclone cloud-water collector at altitudes of 0.2–6.8 km that had sufficient volume for both TOC and speciated organic composition analysis. Species included monocarboxylic acids (glycolate, acetate, formate, and pyruvate), dicarboxylic acids (glutarate, adipate, succinate, maleate, and oxalate), methanesulfonic acid (MSA), and dimethylamine (DMA). TOC values range between 0.018 and 13.66 ppm C with a mean of 0.902 ppm C. The highest TOC values are observed below 2 km with a general reduction aloft. An exception is samples impacted by biomass burning for which TOC remains enhanced at altitudes as high as 6.5 km (7.048 ppm C). Estimated total organic matter derived from TOC contributes a mean of 30.7 % to total measured mass (inorganics + organics). Speciated organics contribute (on a carbon mass basis) an average of 30.0 % to TOC in the study region and account for an average of 10.3 % to total measured mass. The order of the average contribution of species to TOC, in decreasing contribution of carbon mass, is as follows (±1 standard deviation): acetate (14.7 ± 20.5 %), formate (5.4 ± 9.3 %), oxalate (2.8 ± 4.3 %), DMA (1.7 ± 6.3 %), succinate (1.6 ± 2.4 %), pyruvate (1.3 ± 4.5 %), glycolate (1.3 ± 3.7 %), adipate (1.0 ± 3.6 %), MSA (0.1 ± 0.1 %), glutarate (0.1 ± 0.2 %), and maleate (< 0.1 ± 0.1 %). Approximately 70 % of TOC remains unaccounted for, highlighting the complex nature of organics in the study region; in samples collected in biomass burning plumes, up to 95.6 % of TOC mass is unaccounted for based on the species detected. Consistent with other regions, monocarboxylic acids dominate the speciated organic mass (∼ 75 %) and are about 4 times more abundant than dicarboxylic acids. Samples are categorized into four cases based on back-trajectory history, revealing source-independent similarity between the bulk contributions of monocarboxylic and dicarboxylic acids to TOC (16.03 %–23.66 % and 3.70 %–8.75 %, respectively). Furthermore, acetate, formate, succinate, glutarate, pyruvate, oxalate, and MSA are especially enhanced during biomass burning periods, which is attributed to peat emissions transported from Sumatra and Borneo. Lastly, dust (Ca2+) and sea salt (Na+/Cl-) tracers exhibit strong correlations with speciated organics, supporting how coarse aerosol surfaces interact with these water-soluble organics.


2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Markus Heryanto Langsa

<p>Penelitian ini bertujuan untuk menentukan senyawa organik khususnya organic karbon terlarut (DOC) dari dua spesies daun tumbuhan (<em>wandoo eucalyptus </em>and <em>pinus radiate, conifer</em>) yang larut dalam air selama periode 5 bulan leaching eksperimen. Kecepatan melarutnya senyawa organic ditentukan secara kuantitatif dan kualitatif menggunakan kombinasi dari beberapa teknik diantaranya Total Organic Carbon (TOC) analyser, Ultraviolet-Visible (UV-VIS) spektrokopi dan pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS).</p><p>Hasil analisis DOC dan UV menunjukkan peningkatan yang tajam dari kelarutan senyawa organic di awal periode pengamatan yang selanjutnya berkurang seiring dengan waktu secara eksponensial. Jumlah relatif senyawa organic yang terlarut tergantung pada luas permukaan, aktifitas mikrobiologi dan jenis sampel tumbuhan (segar atau kering) yang digunakan. Fluktuasi profil DOC dan UV<sub>254</sub> disebabkan oleh aktifitas mikrobiologi. Diperoleh bahwa daun kering lebih mudah terdegradasi menghasilkan senyawa organic dalam air dibandingkan dengan daun segar. Hasil pyrolysis secara umum menunjukkan bahwa senyawa hidrokarbon aromatic dan fenol (dan turunannya) lebih banyak ditemukan pada residue sampel setelah proses leaching kemungkinan karena adanya senyawa lignin atau aktifitas humifikasi mikrobiologi membuktikan bahwa senyawa-senyawa tersebut merupakan komponen penting dalam proses karakterisasi DOC.</p>


Geology ◽  
2020 ◽  
Author(s):  
C.R. Woltz ◽  
S.M. Porter ◽  
H. Agić ◽  
C.M. Dehler ◽  
C.K. Junium ◽  
...  

Much of our understanding of early eukaryote diversity and paleoecology comes from the record of organic-walled microfossils in shale, yet the conditions controlling their preservation are not well understood. It has been suggested that high concentrations of total organic carbon (TOC) inhibit the preservation of organic fossils in shale, and although this idea is supported anecdotally, it has never been tested. Here we compared the presence, preservational quality, and assemblage diversity of organic-walled microfossils to TOC concentrations of 346 shale samples that span the late Paleoproterozoic to middle Neoproterozoic in age. We found that fossil-bearing samples have significantly lower median TOC values (0.32 wt%, n = 189) than those containing no fossils (0.72 wt%, n = 157). Preservational quality, measured by the loss of surface pattern, density of pitting, and deterioration of wall margin, decreases as TOC increases. Species richness negatively correlates with TOC within the ca. 750 Ma Chuar Group (Arizona, USA), but no relationship is observed in other units. These results support the hypothesis that high TOC content either decreases the preservational quality or inhibits the preservation of organic-walled microfossils altogether. However, it is also possible that other causal factors, including sedimentation rate and microbial degradation, account for the correlation between fossil preservation and TOC. We expect that as TOC varies in space and time, so too does the probability of finding well-preserved fossils. A compilation of 13,940 TOC values spanning Earth history suggests significantly higher median TOC levels in Mesoproterozoic versus Neoproterozoic shale, potentially biasing the interpreted pattern of increased eukaryotic diversity in the Tonian.


Sign in / Sign up

Export Citation Format

Share Document