scholarly journals A computationally-efficient secondary organic aerosol module for three-dimensional air quality models

2008 ◽  
Vol 8 (14) ◽  
pp. 3985-3998 ◽  
Author(s):  
P. Liu ◽  
Y. Zhang

Abstract. Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; conditionally activating organic-inorganic interactions; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 31.4 from benchmark under the rural conditions with 2 ppb isoprene and by factors of 10–71 under various test conditions with 2–10 ppb isoprene and >40% relative humidity while maintaining ±15% deviation. These speed-up methods are applicable to other SOA modules that are based on partitioning theories.

2008 ◽  
Vol 8 (2) ◽  
pp. 7085-7110
Author(s):  
P. Liu ◽  
Y. Zhang

Abstract. Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; turning on organic-inorganic interactions only when the water content associated with organic compounds is significant; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 29.7 with ±15% deviation from benchmark results. These speedup methods are applicable to other SOA modules that are based on partitioning theories.


2008 ◽  
Vol 58 (10) ◽  
pp. 1351-1359 ◽  
Author(s):  
Michelle S. Bergin ◽  
Armistead G. Russell ◽  
Mehmet T. Odman ◽  
Daniel S. Cohan ◽  
William L. Chameides

Author(s):  
Liangzhi Li ◽  
Nanfeng Xiao

Purpose – This paper aims to propose a new view planning method which can be used to calculate the next-best-view (NBV) for multiple manipulators simultaneously and build an automated three-dimensional (3D) object reconstruction system, which is based on the proposed method and can adapt to various industrial applications. Design/methodology/approach – The entire 3D space is encoded with octree, which marks the voxels with different tags. A set of candidate viewpoints is generated, filtered and evaluated. The viewpoint with the highest score is selected as the NBV. Findings – The proposed method is able to make the multiple manipulators, equipped with “eye-in-hand” RGB-D sensors, work together to accelerate the object reconstruction process. Originality/value – Compared to the existed approaches, the proposed method in this paper is fast, computationally efficient, has low memory cost and can be used in actual industrial productions where the multiple different manipulators exist. And, more notably, a new algorithm is designed to speed up the generation and filtration of the candidate viewpoints, which can guarantee both speed and quality.


2007 ◽  
Vol 41 (10) ◽  
pp. 2083-2097 ◽  
Author(s):  
M. van Loon ◽  
R. Vautard ◽  
M. Schaap ◽  
R. Bergström ◽  
B. Bessagnet ◽  
...  

1999 ◽  
Vol 33 (10) ◽  
pp. 1553-1560 ◽  
Author(s):  
Athanasios Nenes ◽  
Spyros N. Pandis ◽  
Christodoulos Pilinis

Sign in / Sign up

Export Citation Format

Share Document