scholarly journals Composition of 15–80 nm particles in marine air

2014 ◽  
Vol 14 (2) ◽  
pp. 2087-2111
Author(s):  
M. J. Lawler ◽  
J. Whitehead ◽  
C. O'Dowd ◽  
C. Monahan ◽  
G. McFiggans ◽  
...  

Abstract. The chemical composition of 15–80 nm diameter particles was measured at Mace Head, Ireland, during May 2011 using the TDCIMS (Thermal Desorption Chemical Ionization Mass Spectrometer). Measurable levels of chloride, sodium, and sulfate were present in essentially all collected samples of these particles at this coastal Atlantic site. Organic compounds were rarely detectable, but this was likely an instrumental limitation. Concomitant particle hygroscopicity observations usually showed two main modes, one which contained a large sea salt component and another which was likely dominated by sulfate. There were several occasions lasting from hours to about two days during which 10–60 nm particle number increased dramatically in polar oceanic air. During these events, the sulfate mode increased substantially in number. This observation, along with the presence of very small (<10 nm) particles during the events, suggests that the particles were formed by homogeneous nucleation, followed by subsequent growth by sulfuric acid and potentially other vapors. The frequency of the events and similarity of event particles to background particles suggest that these events are important contributors of nanoparticles in this environment.

2014 ◽  
Vol 14 (21) ◽  
pp. 11557-11569 ◽  
Author(s):  
M. J. Lawler ◽  
J. Whitehead ◽  
C. O'Dowd ◽  
C. Monahan ◽  
G. McFiggans ◽  
...  

Abstract. The chemical composition of 15–85 nm diameter particles was measured at Mace Head, Ireland, during May 2011 using the TDCIMS (thermal desorption chemical ionization mass spectrometer). Measurable levels of chloride, sodium, and sulfate were present in essentially all collected samples of these particles at this coastal Atlantic site. Acetaldehyde and benzoic acid were also frequently detected. Concomitant particle hygroscopicity observations usually showed a sea-salt mode and a lower hygroscopicity mode with growth factors near to that of ammonium sulfate. There were many periods lasting from hours to about 2 days during which the 10–60 nm particle number increased dramatically in polar oceanic air. These periods were correlated with the presence of benzoic acid in the particles and an increase in the number of lower hygroscopicity mode particles. Very small (< 10 nm) particles were also present, suggesting that new particle formation contributed to these nanoparticle enhancement events.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Yuyang Li ◽  
Michael Lawler ◽  
Jiming Hao ◽  
James Smith ◽  
...  

&lt;p&gt;Ultrafine particles (UFPs) dominate the particle number population in the urban atmosphere and revealing their chemical composition is important. The thermal desorption chemical ionization mass spectrometer (TDCIMS) can semi-continuously measure UFP composition at the molecular level. We modified a TDCIMS and deployed it in urban Beijing. Radioactive materials in the TDCIMS for aerosol charging and chemical ionization were replaced by soft X-ray ionizers so that it can be operated in countries with tight regulations on radioactive materials. Protonated N-methyl-2-pyrrolidone ions were used as the positive reagent ion, which selectively detects ammonia and low-molecular weight-aliphatic amines and amides vaporized from the particle phase. With superoxide as the negative reagent ion, a wide range of inorganic and organic compounds were observed, including nitrate, sulfate, aliphatic acids with carbon numbers up to 18, and highly oxygenated CHO, CHON, and CHOS compounds. The latter two can be attributed to parent ions or the decomposition products of organonitrates and organosulfates/organosulfonates, respectively. Components from both primary emissions and secondary formation of UFPs were identified. Compared to the UFPs measured at forest and marine sites, those in urban Beijing contain more nitrogen-containing and sulfur-containing compounds. These observations illustrate unique features of the UFPs in this polluted urban environment and provide insights into their origins.&lt;/p&gt;


2010 ◽  
Vol 10 (12) ◽  
pp. 30539-30568
Author(s):  
T. Kurtén ◽  
T. Petäjä ◽  
J. Smith ◽  
I. K. Ortega ◽  
M. Sipilä ◽  
...  

Abstract. The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. Using computed proton affinities and reaction thermodynamics for the relevant charging reactions, we show that in the presence of strong bases such as amines, which tend to cluster with the sulfuric acid molecules, a significant fraction of the total gas-phase sulfuric acid may not be measured by a CIMS instrument. If this is the case, this effect has to be taken into account in the interpretation of atmospheric sulfuric acid measurement data, as well as in intercomparison of different CIMS instruments, which likely have different susceptibilities to amine-sulfuric acid clustering.


Sign in / Sign up

Export Citation Format

Share Document