Chemical Ionization
Recently Published Documents


TOTAL DOCUMENTS

4118
(FIVE YEARS 473)

H-INDEX

93
(FIVE YEARS 21)

2021 ◽  
Author(s):  
Martin Breitenlechner ◽  
Gordon A. Novak ◽  
J. Andrew Neuman ◽  
Andrew W. Rollins ◽  
Patrick R. Veres

Abstract. We present the development of a Chemical Ionization Mass Spectrometer (CIMS) ion source specifically designed for in situ measurements of trace gases in the upper troposphere and lower stratosphere. The ion source utilizes a commercially available photoionization krypton lamp, primarily emitting photons in the vacuum ultraviolet (VUV) region at wavelengths of 124 and 117 nm (corresponding to energies of 10 and 10.6 eV, respectively), coupled to a commercially available Vocus Proton Transfer Reaction Mass Spectrometer. The VUV ion source can produce both negative and positive reagent ions, however, here we primarily focus on generating iodide anions (I−). The instrument’s drift tube (also known as ion molecule reactor) operates at pressures between 2 and 10 mbar, which facilitates ambient sampling at atmospheric pressures as low as 50 mbar. The low operating pressure reduces secondary ion chemistry that can occur in iodide CIMS. It also allows the addition of water vapor to the drift tube to exceed typical ambient humidity by more than one order of magnitude, significantly reducing ambient humidity dependence of sensitivities. An additional benefit of this ion source and drift tube is a 10 to 100-fold reduction in nitrogen consumed during operation relative to standard I− ion sources, resulting in significantly reduced instrument weight and operational costs. In iodide mode, sensitivities of 76 cps/ppt for nitric acid, 35 cps/ppt for Br2, and 8.9 cps/ppt for Cl2 were achieved. Lastly, we demonstrate that this ion source can generate benzene (C6H6+) and ammonium (NH4+) reagent ions to expand the number of detected atmospheric trace gases.


2021 ◽  
Vol 14 (10) ◽  
pp. 6551-6560
Author(s):  
Chenyang Bi ◽  
Jordan E. Krechmer ◽  
Manjula R. Canagaratna ◽  
Gabriel Isaacman-VanWertz

Abstract. Quantitative calibration of analytes using chemical ionization mass spectrometers (CIMSs) has been hindered by the lack of commercially available standards of atmospheric oxidation products. To accurately calibrate analytes without standards, techniques have been recently developed to log-linearly correlate analyte sensitivity with instrument operating conditions. However, there is an inherent bias when applying log-linear calibration relationships that is typically ignored. In this study, we examine the bias in a log-linear-based calibration curve based on prior mathematical work. We quantify the potential bias within the context of a CIMS-relevant relationship between analyte sensitivity and instrument voltage differentials. Uncertainty in three parameters has the potential to contribute to the bias, specifically the inherent extent to which the nominal relationship can capture true sensitivity, the slope of the relationship, and the voltage differential below which maximum sensitivity is achieved. Using a prior published case study, we estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A parameter-explicit solution is proposed in this work for completely removing the inherent bias generated in the log-linear calibration relationships. A simplified correction method is also suggested for cases where a comprehensive bias correction is not possible due to unknown uncertainties of calibration parameters, which is shown to eliminate the bias on average but not for each individual compound.


Sign in / Sign up

Export Citation Format

Share Document