scholarly journals Observations of lunar tides in the mesosphere and lower thermosphere at Arctic and middle latitudes

2006 ◽  
Vol 6 (3) ◽  
pp. 4643-4672 ◽  
Author(s):  
D. J. Sandford ◽  
H. G. Muller ◽  
N. J. Mitchell

Abstract. Meteor radars have been used to measure the horizontal winds in the mesosphere and lower thermosphere over Castle Eaton (52° N) in the UK and over Esrange (68° N) in Arctic Sweden. We consider a 16-year data set covering the interval 1988–2004 for the UK and a 6-year data set covering the interval 1999–2005 for the Arctic. The signature of the 12.42-h (M2) lunar tide has been identified at both locations. The lunar tide is observed to reach amplitudes as large as 11 ms−1. The Arctic radar has an interferometer and so allows investigation of the vertical structure of the lunar tide. At both locations the tide has maximum amplitudes in winter with a second autumnal maximum. The amplitude is found to increase with height over the 80–100 km height range observed. Vertical wavelengths are very variable, ranging from about 15 km in summer to more than 60 km in winter. Comparisons with the Vial and Forbes, 1994 model reveals generally good agreement, except in the case of the summer vertical wavelengths which are observed to be significantly shorter than predicted.

2006 ◽  
Vol 6 (12) ◽  
pp. 4117-4127 ◽  
Author(s):  
D. J. Sandford ◽  
H. G. Muller ◽  
N. J. Mitchell

Abstract. Meteor radars have been used to measure the horizontal winds in the mesosphere and lower thermosphere over Castle Eaton (52° N) in the UK and over Esrange (68° N) in Arctic Sweden. We consider a 16-year data set covering the interval 1988–2004 for the UK and a 6-year data set covering the interval 1999–2005 for the Arctic. The signature of the 12.42-h (M2) lunar tide has been identified at both locations. The lunar tide is observed to reach amplitudes as large as 11 ms−1. The Arctic radar has an interferometer and so allows investigation of the vertical structure of the lunar tide. At both locations the tide has maximum amplitudes in winter with a second autumnal maximum. The amplitude is found to increase with height over the 80–100 km height range observed. Vertical wavelengths are very variable, ranging from about 15 km in summer to more than 60 km in winter. Comparisons with the Vial and Forbes (1994) model reveals generally good agreement, except in the case of the summer vertical wavelengths which are observed to be significantly shorter than predicted.


2007 ◽  
Vol 25 (1) ◽  
pp. 9-12 ◽  
Author(s):  
D. J. Sandford ◽  
N. J. Mitchell

Abstract. A meteor radar has been used to measure the horizontal winds in the equatorial mesosphere and lower thermosphere over Ascension Island (8.0° S, 14.4° W). A 5-year data set covering the interval 2001–2005 over the height range 78–100 km is considered. The lunar M2 tide is clearly evident in the data and reaches amplitudes as large as 11 ms−1 in the meridional component and 6 ms−1 in the zonal component. These are the first observations of the lunar tide made over the equatorial Atlantic sector. Comparisons of the observed seasonal behaviour with the model of Vial and Forbes (1994) reveals good agreement, but the observed amplitudes are generally larger and there is a systematic phase difference of ~2 h with the observed phases lagging the model. Comparisons with observations made at other equatorial sites suggest the presence of non-migrating lunar M2 tides and/or significant inter-annual variability.


2009 ◽  
Vol 27 (5) ◽  
pp. 1989-1999 ◽  
Author(s):  
G. Jiang ◽  
J. Xu ◽  
S. J. Franke

Abstract. Wind data collected by the Maui meteor radar (20.75° N, 156.43° W) are used to study the 8-h tide in the mesosphere and lower thermosphere (MLT) region at a low-latitude station. The data set spans the time interval from 19 May 2002 to 24 May 2007. Our results show that the 8-h tide is a regular and distinct feature over Maui. The meridional component of this wave is significantly larger than the zonal component. The meridional component exhibits a semiannual variation in amplitude, with peaks near the equinoxes, whereas the variation of the zonal component does not show this seasonal characteristic. The strongest wave motions mostly occur in the height range of 92–96 km near spring equinox (March) and at higher altitudes near autumn equinox (October). The vertical variations of 8-h tidal phase at Maui indicate an upward wave energy flux. The vertical wavelengths are ≥54 km in equinox months.


2009 ◽  
Vol 9 (6) ◽  
pp. 25213-25243
Author(s):  
K. A. Day ◽  
N. J. Mitchell

Abstract. The 16-day planetary wave in the polar mesosphere and lower thermosphere has been investigated using meteor radars at Esrange (68° N, 21° E) in the Arctic and Rothera (68° S, 68° W) in the Antarctic. The measurements span the 10-year interval from October 1999 to July 2009 and the 5-year interval February 2005 to July 2009, respectively. The height range covered is about 80–100 km. The wave is seen to occur in intermittent bursts, where wave amplitudes typically reach a maximum of about 10 m s−1, and never more than about 20 m s−1. Horizontal wind variance within a wave-period range of 12 to 20 days is used as a proxy for the activity of the 16-day wave. Wave activity is strong for 3 to 4 months in winter, where it is present across the entire height range observed and monthly wave variance reaches about 65 m2 s−2. Some weak and intermittent activity is observed throughout the other seasons including summer. However, there is a high degree of inter-annual variability and in some individual years wave activity is almost absent. The data are used to construct a representative climatology for the Arctic and Antarctic. The seasonal cycle of the 16-day wave is found to be very similar in both polar regions. The 16-day wave has slightly greater amplitudes in the zonal component of the winds than in the meridional. Mesospheric temperatures measured by the radars were used to further investigate the 16-day wave. The temperatures reveal a clear signature of the 16-day wave. Temperature amplitudes are generally only a few Kelvin but occasional bursts of up to 10 K have been observed. Observations of the wave in summer are sometimes consistent with the suggestion of ducting from the winter hemisphere.


2010 ◽  
Vol 10 (3) ◽  
pp. 1461-1472 ◽  
Author(s):  
K. A. Day ◽  
N. J. Mitchell

Abstract. The 16-day planetary wave in the polar mesosphere and lower thermosphere has been investigated using meteor radars at Esrange (68° N, 21° E) in the Arctic and Rothera (68° S, 68° W) in the Antarctic. The measurements span the 10-year interval from October 1999 to July 2009 and the 5-year interval February 2005 to July 2009, respectively. The height range covered is about 80–100 km. In both polar regions the wave is seen to occur in intermittent bursts, where wave amplitudes typically reach a maximum of about 15 m s−1, and never more than about 20 m s−1. Horizontal wind variance within a wave-period range of 12 to 20 days is used as a proxy for the activity of the 16-day wave. Wave activity is strong for 3 to 4 months in winter, where it is present across the entire height range observed and monthly wave variance reaches about 65 m2 s−2. Some weak and intermittent activity is observed throughout the other seasons including summer. However, there is a high degree of inter-annual variability and in some individual years wave activity is almost absent. The data are used to construct a representative climatology for the Arctic and Antarctic. The seasonal cycle of the 16-day wave is found to be very similar in both polar regions. The 16-day wave has slightly greater amplitudes in the zonal component of the winds than in the meridional. Mesospheric temperatures measured by the radars were used to further investigate the 16-day wave. The temperatures reveal a clear signature of the 16-day wave. Temperature amplitudes are generally only a few Kelvin but occasional bursts of up to 10 K have been observed. Observations of the wave in summer are sometimes consistent with the suggestion of ducting from the winter hemisphere.


2016 ◽  
Vol 9 (1) ◽  
pp. 295-311 ◽  
Author(s):  
M. P. Langowski ◽  
C. von Savigny ◽  
J. P. Burrows ◽  
V. V. Rozanov ◽  
T. Dunker ◽  
...  

Abstract. An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90–93 km for all latitudes and seasons, and has a full width at half maximum of 5–15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000–4000 atoms cm−3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm−3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm−3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.


2008 ◽  
Vol 8 (3) ◽  
pp. 749-755 ◽  
Author(s):  
D. J. Sandford ◽  
M. J. Schwartz ◽  
N. J. Mitchell

Abstract. Recent observations of the polar mesosphere have revealed that waves with periods near two days reach significant amplitudes in both summer and winter. This is in striking contrast to mid-latitude observations where two-day waves maximise in summer only. Here, we use data from a meteor radar at Esrange (68° N, 21° E) in the Arctic and data from the MLS instrument aboard the EOS Aura satellite to investigate the wintertime polar two-day wave in the stratosphere, mesosphere and lower thermosphere. The radar data reveal that mesospheric two-day wave activity measured by horizontal-wind variance has a semi-annual cycle with maxima in winter and summer and equinoctial minima. The MLS data reveal that the summertime wave in the mesosphere is dominated by a westward-travelling zonal wavenumber three wave with significant westward wavenumber four present. It reaches largest amplitudes at mid-latitudes in the southern hemisphere. In the winter polar mesosphere, however, the wave appears to be an eastward-travelling zonal wavenumber two, which is not seen during the summer. At the latitude of Esrange, the eastward-two wave reaches maximum amplitudes near the stratopause and appears related to similar waves previously observed in the polar stratosphere. We conclude that the wintertime polar two-day wave is the mesospheric manifestation of an eastward-propagating, zonal-wavenumber-two wave originating in the stratosphere, maximising at the stratopause and likely to be generated by instabilities in the polar night jet.


2019 ◽  
Author(s):  
Yugo Kanaya ◽  
Kazuyuki Miyazaki ◽  
Fumikazu Taketani ◽  
Takuma Miyakawa ◽  
Hisahiro Takashima ◽  
...  

Abstract. Constraints from ozone (O3) observations over oceans are needed in addition to those from terrestrial regions to fully understand global tropospheric chemistry and its impact on the climate. Here, we provide a large data set of ozone and carbon monoxide (CO) levels observed (for 11 666 and 10 681 h, respectively) over oceans. The data set is derived from observations made during 24 research cruise legs of R/V Mirai during 2012 to 2017, in the Southern, Indian, Pacific, and Arctic Oceans, covering the region from 67° S to 75° N. The data are suitable for critical evaluation of the over-ocean distribution of ozone derived from chemical transport models. We first give an overview of the statistics in the data set and highlight key features in terms of geographical distribution and air mass type. We then use the data set to evaluate ozone concentration fields from Tropospheric Chemistry Reanalysis version 2 (TCR-2), produced by assimilating a suite of satellite observations of multiple species into a chemical transport model, namely CHASER. For long-range transport of polluted air masses from continents to the oceans, during which the effects of forest fires and fossil fuel combustion were recognized, TCR-2 gave an excellent performance in reproducing the observed temporal variations and photochemical buildup of O3 when assessed from ΔO3 / ΔCO ratios. For clean marine conditions with low and stable CO concentrations, two focused analyses were performed. The first was in the Arctic (> 70° N) in September every year from 2013 to 2016; TCR-2 underpredicted O3 levels by 6.7 ppb (21 %) on average. The observed vertical profiles from O3 soundings from R/V Mirai during September 2014 had less steep vertical gradients at low altitudes (> 850 hPa) than those obtained TCR-2. This suggests the possibilities of more efficient descent of the O3-rich air from above or less efficient dry deposition on the surface than were assumed in the model. In the second analysis, over the western Pacific equatorial region (125–165° E, 10° S to 25° N), the observed O3 level frequently decreased to less than 10 ppb in comparison to that obtained with TCR-2, and also those obtained in most of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) model runs for the decade from 2000. These results imply loss processes that are unaccounted for in the models. We found that the model’s positive bias positively correlated with the daytime residence times of air masses over a particular grid, namely 165–180° E and 15–30° N; an additional loss rate of 0.25 ppb h−1 in the grid best explained the gap. Halogen chemistry, which is commonly omitted from currently used models, might be active in this region and could have contributed to additional losses. Our open data set covering wide ocean regions is complementary to the Tropospheric Ozone Assessment Report data set, which basically comprises ground-based observations, and enables a fully global study of the behavior of O3.


Sign in / Sign up

Export Citation Format

Share Document