polar stratosphere
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
pp. 1-63

Abstract Motivated by the strong Antarctic sudden stratospheric warming (SSW) in 2019, a survey on the similar Antarctic weak polar events (WPV) is presented, including their life cycle, dynamics, seasonality, and climatic impacts. The Antarctic WPVs have a frequency of about four events per decade, with the 2002 event being the only major SSW. They show a similar life cycle to the SSWs in the Northern Hemisphere but have a longer duration. They are primarily driven by enhanced upward-propagating wavenumber 1 in the presence of a preconditioned polar stratosphere, i.e., a weaker and more contracted Antarctic stratospheric polar vortex. Antarctic WPVs occur mainly in the austral spring. Their early occurrence is preceded by an easterly anomaly in the middle and upper equatorial stratosphere besides the preconditioned polar stratosphere. The Antarctic WPVs increase the ozone concentration in the polar region and are associated with an advanced seasonal transition of the stratospheric polar vortex by about one week. Their frequency doubles after 2000 and is closely related to the advanced Antarctic stratospheric final warming in recent decades. The WPV-resultant negative phase of the southern annular mode descends to the troposphere and persists for about three months, leading to persistent hemispheric scale temperature and precipitation anomalies.


2021 ◽  
Author(s):  
Helmut Ziereis ◽  
Peter Hoor ◽  
Jens-Uwe Grooß ◽  
Andreas Zahn ◽  
Greta Stratmann ◽  
...  

Abstract. During winter 2015/2016 the Arctic stratosphere was characterized by extraordinarily low temperatures in connection with the occurrence of extensive polar stratospheric clouds. From mid of December 2015 until mid of March 2016 the German research aircraft HALO (High Altitude and Long–Range Research Aircraft) was deployed to probe the lowermost stratosphere in the Arctic region within the POLSTRACC (Polar Stratosphere in a Changing Climate) mission. More than twenty flights have been conducted out of Kiruna/Sweden and Oberpfaffenhofen/Germany, covering the whole winter period. Besides total reactive nitrogen (NOy), observations of nitrous oxide, nitric acid, ozone and water were used for this study. Total reactive nitrogen and its partitioning between gas- and particle phase are key parameters for understanding processes controlling the ozone budget in the polar winter stratosphere. The redistribution of total reactive nitrogen was evaluated by using tracer–tracer correlations. In January air masses with extensive nitrification were encountered at altitudes between 12 and 15 km. The excess NOy amounted up to about 6 ppb. During several flights, along with gas–phase nitrification, indications for extensive occurrence of nitric acid containing particles at flight altitude were found. These observations support the assumption of sedimentation and subsequent evaporation of nitric acid containing particles leading to redistribution of total reactive nitrogen. Remnants of nitrified air masses have been observed until mid of March. Between end of February and mid of March also de-nitrified air masses have been observed in connection with high potential temperatures. Using tracer–tracer correlations, missing total reactive nitrogen was estimated to amount up to 6 ppb. This indicates the downward transport of air masses that have been denitrified during the earlier winter phase. Observations within POLSTRACC, at the bottom of the vortex, reflect heterogeneous processes from the overlying Arctic winter stratosphere. The comparison of the observations with CLaMS model simulations confirm and complete the picture arising from the present measurements. The simulations confirm, that the ensemble of all observations is representative for the vortex–wide vertical NOy-redistribution.


2021 ◽  
Author(s):  
Jens-Uwe Grooß ◽  
Rolf Müller

<p>In Arctic winter/spring 2019/2020, the stratospheric temperatures  were exceptionally low until early April and the polar vortex was  very stable.  As a consequence, significant chemical ozone depletion  occurred in Northern polar regions in spring 2020.  Here, we present  simulations by the Chemical Lagrangian Model of the Stratosphere  (CLaMS) that address the development of chlorine compounds and  ozone in the polar stratosphere in 2020.  The simulation reproduces  relevant observations of ozone and chlorine compounds, as shown by  comparisons with data from Microwave Limb Sounder (MLS), Atmospheric  Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS),  in-situ ozone sondes and the Ozone Monitoring Instrument (OMI).  Although the concentration of chlorine and bromine compounds in the  polar stratosphere has decreased by more than 10% compared to the  peak values around the year 2000, the meteorological conditions in  winter/spring 2019/2020 caused an unprecedented ozone depletion. The  simulated lowest ozone mixing ratio was around 0.05 ppmv and the  calculated partial ozone column depletion in the vortex core in the  lower stratosphere reached 141 Dobson Units between 350 and 600 K  potential temperature, which is more than the  loss in the years 2011 and 2016 which until 2020 had seen the  largest Arctic ozone depletion on record.</p>


2021 ◽  
pp. 95-104
Author(s):  
A. N. LUKYANOV ◽  
◽  
A. V. GANSHIN ◽  
V. A. YUSHKOV ◽  
A. S. VYAZANKIN ◽  
...  

A short description and some applications of the trajectory and dispersion models developed in Central Aerological Observatory (CAO) for studying the stratospheric and tropospheric transport of pollutants are presented. The TRACAO trajectory model is applied to investigate the processes related to the ozone depletion in the winter polar stratosphere, in order to study the mid-latitude stratosphere-troposphere exchange, as well as to analyze balloon and aircraft (M55 “Geophysics,” Yak-42D “Roshydromer”) observations. Then based on the TRACAO, the GLADIM dispersion model that simulates trajectories of the set of particles with the eddy diffusion parameterization and determines the pollutant concentration at the regular grid points, was developed. The dispersion model was applied to simulate volcanic ash dispersion and carbon dioxide profile reconstruction. The model validation was done by comparisons with the results of the widely used FLEXPART model. Nowadays these models are used at the “Middle Atmosphere” Regional Information and Analytic Center established in CAO.


2020 ◽  
Vol 65 (21) ◽  
pp. 1775-1777
Author(s):  
Yongyun Hu
Keyword(s):  

2020 ◽  
Vol 33 (17) ◽  
pp. 7619-7629
Author(s):  
Simchan Yook ◽  
David W. J. Thompson ◽  
Susan Solomon ◽  
Seo-Yeon Kim

AbstractThe purpose of this study is to quantify the effects of coupled chemistry–climate interactions on the amplitude and structure of stratospheric temperature variability. To do so, the authors examine two simulations run on version 4 of the Whole Atmosphere Coupled Climate Model (WACCM): a “free-running” simulation that includes fully coupled chemistry–climate interactions and a “specified chemistry” version of the model forced with prescribed climatological-mean chemical composition. The results indicate that the inclusion of coupled chemistry–climate interactions increases the internal variability of temperature by a factor of ~2 in the lower tropical stratosphere and—to a lesser extent—in the Southern Hemisphere polar stratosphere. The increased temperature variability in the lower tropical stratosphere is associated with dynamically driven ozone–temperature feedbacks that are only included in the coupled chemistry simulation. The results highlight the fundamental role of two-way feedbacks between the atmospheric circulation and chemistry in driving climate variability in the lower stratosphere.


2020 ◽  
Author(s):  
Federico Fabiano ◽  
Virna Meccia ◽  
Paolo Davini ◽  
Paolo Ghinassi ◽  
Susanna Corti

Abstract. Future wintertime atmospheric circulation changes in the Euro-Atlantic (EAT) and Pacific-North American (PNA) sectors are studied from a Weather Regimes perspective. The CMIP5 and CMIP6 historical simulations performance in reproducing the observed regimes is first evaluated, showing a general improvement of CMIP6 models, more evident for EAT. The circulation changes projected by CMIP5 and CMIP6 scenario simulations are analyzed in terms of the change in the frequency and persistence of the regimes. In the EAT sector, significant positive trends are found for the frequency and persistence of NAO+ for SSP245, SSP370 and SSP585 scenarios, with a concomitant decrease in the frequency of the Scandinavian Blocking and Atlantic Ridge regimes. For PNA, the Pacific Through regime shows a significant increase, while the Bering Ridge is predicted to decrease in all scenarios analyzed. The spread among the model responses is linked to different levels of warming in the Polar Stratosphere, the North Atlantic and the Arctic.


2019 ◽  
Vol 100 (12) ◽  
pp. 2634-2664 ◽  
Author(s):  
Hermann Oelhaf ◽  
Björn-Martin Sinnhuber ◽  
Wolfgang Woiwode ◽  
Harald Bönisch ◽  
Heiko Bozem ◽  
...  

Abstract The Polar Stratosphere in a Changing Climate (POLSTRACC) mission employed the German High Altitude and Long Range Research Aircraft (HALO). The payload comprised an innovative combination of remote sensing and in situ instruments. The in situ instruments provided high-resolution observations of cirrus and polar stratospheric clouds (PSCs), a large number of reactive and long-lived trace gases, and temperature at the aircraft level. Information above and underneath the aircraft level was achieved by remote sensing instruments as well as dropsondes. The mission took place from 8 December 2015 to 18 March 2016, covering the extremely cold late December to early February period and the time around the major warming in the beginning of March. In 18 scientific deployments, 156 flight hours were conducted, covering latitudes from 25° to 87°N and maximum altitudes of almost 15 km, and reaching potential temperature levels of up to 410 K. Highlights of results include 1) new aspects of transport and mixing in the Arctic upper troposphere–lower stratosphere (UTLS), 2) detailed analyses of special dynamical features such as tropopause folds, 3) observations of extended PSCs reaching sometimes down to HALO flight levels at 13–14 km, 4) observations of particulate NOy and vertical redistribution of gas-phase NOy in the lowermost stratosphere (LMS), 5) significant chlorine activation and deactivation in the LMS along with halogen source gas observations, and 6) the partitioning and budgets of reactive chlorine and bromine along with a detailed study of the efficiency of ClOx/BrOx ozone loss cycle. Finally, we quantify—based on our results—the ozone loss in the 2015/16 winter and address the question of how extraordinary this Arctic winter was.


Sign in / Sign up

Export Citation Format

Share Document