scholarly journals Sea surface topography reconstruction from X-band radar images

2008 ◽  
Vol 19 ◽  
pp. 83-86 ◽  
Author(s):  
F. Serafino ◽  
C. Lugni ◽  
F. Soldovieri

Abstract. The paper deals with the feasibility study of the sea state monitoring starting from X-band radar images. The exploitation of radar images allows to achieve a global vision of the sea state compared to the local vision given by the usual sensors as the buoys. The processing approach is based on the formulation of problem as an inverse one where starting from the electromagnetic field backscattered by the sea surface, the information about the sea state are retrieved. The reliability of the inversion procedure is shown by processing synthetic and experimental data where particular attention is focussed to the determination of the sea current and speed of the vessel.

Author(s):  
A. P. Wijaya

The use of remotely wave sensing by a marine radar is increasingly needed to provide wave information for the sake of safety and operational effectiveness in many offshore activities. Reconstruction of radar images needs to be carried out since radar images are a poor representation of the sea surface elevation: effects like shadowing and tilt determine the backscattered intensity of the images. In [1], the sea state reconstruction and wave propagation to the radar has been tackled successfully for synthetic radar images of linear seas, except for a scaling in the vertical direction. The determination of the significant wave height from the shadowed images only has been described in [2]. This paper will summarize these methods, and provides the first results for the extension to nonlinear seas.


Author(s):  
Francesco Serafino ◽  
Claudio Lugni ◽  
Francesco Soldovieri

This work deals with the sea state monitoring starting from marine radar images collected on a moving ship. For such a topic, one of the key factors affecting the reliability of the reconstruction procedure is the determination of the equivalent surface current that also accounts for the speed of the moving ship. Here, we propose a method able to evaluate also high values of the sea surface current. The reliability of the proposed procedure is shown by a numerical analysis with synthetic data. Finally, we present some preliminary results with measurements collected on a moving ship.


Author(s):  
Konstanze Reichert ◽  
Katrin Hessner ◽  
Jens Dannenberg ◽  
Ina Traenkmann

The Wave Monitoring System WaMoS II was developed for real time measurements of directional ocean waves spectra to monitor the sea state from fixed platforms in deep water or coastal areas as well as from moving vessels. The system is based on a standard marine X-Band radar used for navigation and ship traffic control. WaMoS II digitises the analogous radar signal and analyses the sea clutter information to obtain directional wave spectra from the sea surface in real time even under harsh weather conditions and during night. Spectral sea state parameters such as significant wave height, peak wave period and peak wave direction both for wind sea and swell are derived. Within the EU funded project ‘MaxWave’ and the German project ‘SinSee’ new algorithms were developed to determine sea surface elevation maps from radar images which are used to investigate the spatial and temporal evolution of single waves simultaneously. In this paper a short overview describes the calculation of surface elevation maps and the detection of individual waves. Considering two case studies, the results of spatial single wave detection and corresponding temporal single wave properties are compared and discussed. Individual wave parameters derived from radar images are compared to individual waves measured by a buoy. An application of the method to characterise extreme sea states is discussed.


2015 ◽  
Vol 96 ◽  
pp. 79-85 ◽  
Author(s):  
Zhongbiao Chen ◽  
Yijun He ◽  
Biao Zhang ◽  
Zhongfeng Qiu

2020 ◽  
Vol 12 (11) ◽  
pp. 1736
Author(s):  
Zhongqing Cao ◽  
Lixin Guo ◽  
Shifeng Kang ◽  
Xianhai Cheng ◽  
Qingliang Li ◽  
...  

In ground-based microwave radiometer remote sensing, low-elevation-angle (−3°~3°) radiation data are often discarded because they are considered to be of little value and are often difficult to model due to the complicated mechanism. Based on the observed X-band horizontal polarization low elevation angle microwave radiation data and the meteorological data at the same time, this study investigated the generation mechanism of low elevation angle brightness temperature (LEATB) and its relationship with meteorological data, i.e., temperature, humidity, and wind speed, under low sea state. As a result, one could find that the LEATB was sensitive to the atmosphere at the elevation angle between 1° to 3°, and a diurnal variation of the LEATB reached up to 10 K. This study also found a linear relationship between the LEATB and sea surface wind speed under low sea state at an elevation range from −3° to 0°, i.e., the brightness temperature decreased as the wind speed increased, which was inconsistent with the observations at the elevation angle from −10° to −5°. The variation of the LEATB difference according to the change in the over-the-horizon detection capability (OTHDC) of the shipborne microwave radar was examined to identify the reason for this phenomenon theoretically. The results showed that the LEATB difference was significantly influenced by a change in the OTHDC. Further, this study examined a remote sensing method to extract the sea surface wind speed data from experimental LEATB data under low sea state. The results demonstrated that the X-band horizontal polarization LEATBs were useful to retrieve the sea surface wind speed data at a reasonable accuracy—the root mean square error of 0.02408 m/s. Overall, this study proved the promising potential of the LEATB data for retrieving temperature profiles, humidity profiles, sea surface winds, and the OTHDC.


2015 ◽  
Vol 101 ◽  
pp. 244-253 ◽  
Author(s):  
S. Salcedo-Sanz ◽  
J.C. Nieto Borge ◽  
L. Carro-Calvo ◽  
L. Cuadra ◽  
K. Hessner ◽  
...  

2017 ◽  
Author(s):  
Giovanni Ludeno ◽  
Francesco Raffa ◽  
Francesco Soldovieri ◽  
Francesco Serafino

Abstract. This letter presents the monitoring results of the sea waves and the surface currents obtained by analyzing data acquired by a X-band marine radar in two different operative conditions, namely the short and medium pulse modes. In particular, we investigated the feasibility to use a medium radar pulse for sea state monitoring by comparing the performance in both the radar modes. The comparison was carried out by means of an experimental campaign and we observed a good agreement for surface current and sea state parameters estimation.


Sign in / Sign up

Export Citation Format

Share Document