scholarly journals Towards best possible safety – current regulatory research for the German site selection process for high-level radioactive waste disposal

2020 ◽  
Vol 54 ◽  
pp. 157-163
Author(s):  
Axel Liebscher ◽  
Christoph Borkel ◽  
Michael Jendras ◽  
Ute Maurer-Rurack ◽  
Carsten Rücker

Abstract. The Federal Office for the Safety of Nuclear Waste Management (BASE – Bundesamt für die Sicherheit der nuklearen Entsorgung) is the German federal regulatory authority for radioactive waste disposal. It supervises the German site selection process and is responsible for the accompanying public participation. Task related research is an integral part of BASE's activities. The projects MessEr and übErStand compiled the state-of-the-art science and technology regarding surface based exploration methods suitable for addressing the criteria and requirements specified in the German Site Selection Act. The results support BASE to review and define the surface-based exploration programs to be executed by the national implementer BGE (Bundesgesellschaft für Endlagerung mbH). To support BASE in reviewing the application of the exclusion criteria “active fault zones” according to the Site Selection Act, the project KaStör reviewed the current knowledge on active faults and fault zones in Germany and recommends methodological approaches to date and identify the activity of faulting. For the time being, the Site Selection Act defines 100 ∘C as a draft limit on the temperature at the outer surface of a repository container for all host rocks. The project Grenztemperatur studied the temperature dependency of the different thermal-hydraulic-mechanical-chemical/biological (THMC/B) processes according to available features-events-processes (FEP) catalogues for rock salt, clay stone, and crystalline rock and describes ways to defining host rock specific maximum temperatures based on specific disposal and safety concepts. Safety oriented weighting of different criteria and comparison of different potential regions and sites are key challenges during the siting process. The project MABeSt studied and reviewed methodological approaches to this weighting and comparison problem with special emphasis on multi criteria analysis (MCA) and multi criteria decision analysis (MCDA). A key requirement for safe geological disposal of nuclear waste is barrier integrity. The project PeTroS performed the first triaxial flow-through experiments on natural rock salt samples at disposal relevant p−T conditions and studied potential percolation mechanisms of fluids within rock salt. The data substantiate that the minimum stress criterion and/or the dilatancy criterion are the prime “percolation thresholds” in rock salt. The research results support BASE in fulfilling its tasks as national regulator according to state-of-the-art science and technology and are also relevant to other stakeholders of the siting process.

2020 ◽  
Author(s):  
Axel Liebscher ◽  
Christoph Borkel ◽  
Ute Maurer-Rurack ◽  
Michael Jendras

<p>The German Site Selection Act (Standortauswahlgesetz – StandAG) defines the search for and selection of the national German site with best possible safety for a disposal facility for high-level radioactive waste. The Federal Office for the Safety of Nuclear Waste Management (BASE) is the federal regulatory authority for radioactive waste disposal. BASE supervises the site selection process for a repository for high-level radioactive waste and is responsible for the accompanying public participation. To fulfill its tasks according to the state of science and technology, task related research forms an integral part of BASEs activities. Current research activities in the context of the site selection process address geoscientific questions, methodological aspects of the implementation of the site selection process, and public participation aspects. This contribution provides an overview on the current geoscientific and methodological research activities of BASE.</p><p>According to § 16 StandAG , the national implementer (Bundesgesellschaft für Endlagerung  mbH) has to execute surface-based exploration and BASE has to review and define the respective exploration program. Therefore, the two projects <em>MessEr</em> and <em>übErStand</em> compiled state of science and technology with regard to surface based exploration methods. The foci were on methods suitable for addressing the criteria and requirements set out in the German Site Selection Act.</p><p>The project <em>KaStör</em> reviewed the current knowledge on active faults and fault zones in Germany and studied methodological approaches to date and identify the activity of faulting. The results support BASE to review the application of the exclusion criteria for areas with “active faults zones” according to § 22 (2) StandAG.</p><p>For the time being, § 27 (4) StandAG defines 100 °C as precautionary maximum temperature at the outer surface of waste canisters for all host rocks. The project <em>Grenztemperatur</em> compiled and studied the temperature dependency of the different THMC/B processes according to available FEP catalogues for rock salt, clay stone, and crystalline rock. The project also identified open and pending research questions and describes ways to define host rock specific maximum temperatures based on specific disposal and safety concepts.</p><p>During the site selection process, safety oriented weighting of different criteria and comparison of different potential regions and sites have to be performed. The project <em>MaBeSt</em> studied and reviewed methodological approaches to this weighting and comparison problem with special emphasis on multi criteria analysis (MCA) and multi criteria decision analysis (MCDA).</p><p>Key requirement for safe geological disposal of nuclear waste is barrier integrity. The project <em>PeTroS</em> experimentally studied potential percolation mechanisms of fluids within rock salt at isotropic conditions at disposal relevant pressures and temperatures.</p>


2021 ◽  
Vol 1 ◽  
pp. 63-64
Author(s):  
Lisa Richter ◽  
Thies Beilecke ◽  
Raphael Dlugosch ◽  
Tilo Kneuker ◽  
Lukas Pollok ◽  
...  

Abstract. The site selection procedure for a high-level radioactive waste repository in Germany is based on the Repository Site Selection Act (StandAG, 2017), which comprises three phases. In phase 2 the Federal Company for Radioactive Waste Disposal (BGE) will conduct surface exploration. Based on the exploratory findings, the further developed preliminary safety analyses, the common requirements and criteria, and potential socioeconomic analyses will be applied feeding into proposed sites for underground exploration. Commissioned by the BGE, the Federal Institute for Geosciences and Natural Resources (BGR) contributes to this procedure with the projects GeoMePS and ZuBeMErk, which collate and assess geoscientific and geophysical methods and programs for surface exploration. Their common goal is to develop recommendations for surface exploration of siting regions. For this purpose, the BGR has developed a systematic approach that includes (1) deducing exploration targets, (2) compilation of geoscientific and geophysical exploration methods in a database structure, and (3) analysis of case studies of national and international exploration programs for high-level radioactive waste disposal. Exploration targets are based on the common criteria and requirements as defined by the StandAG. The identified exploration targets (Kneuker et al., 2020) together with a large number of geoscientific and geophysical exploration methods were integrated and linked within the BGR database “GeM-DB”. All methods were evaluated according to their suitability and applicability for (a) the three defined host rocks (crystalline rock, claystone, rock salt) and (b) the previously defined exploration targets. In step (3) the BGR reviews national and international waste disposal programs exploring for crystalline rock, claystone, and rock salt. Here, the focus is on nondestructive and minimally invasive surface exploration techniques, such as geophysical airborne and ground-based methods or investigations in drill holes and on drill cores. The aims are to identify gaps in the method catalogue of the GeM-DB and to infer exploration directives for surface exploration during phase 2. An example is the analysis of the Swedish site selection process, especially the site investigation program. There, the site investigations are, e.g. the basis for the discipline-specific site descriptive models, which were applied for design and safety assessments (SKB, 2001). The Swedish site investigation program along with programs of other countries considering crystalline host rocks, such as Finland and Canada, show a common ground, which could be adapted for surface exploration of crystalline host rock regions in Germany. The assessment and evaluation of selected programs exploring for rock salt and claystone is currently in progress. The entire systematic approach of the projects GeoMePS and ZuBeMErk aims to develop recommendations for a nondestructive and minimally invasive surface exploration program of siting regions in Germany, regarding the lithological, structural, mechanical, and hydrogeological characterization of the different host rock formations.


2021 ◽  
Vol 1 ◽  
pp. 53-55
Author(s):  
Raphael Dlugosch ◽  
Thies Beilecke ◽  
Tilo Kneuker ◽  
Lukas Pollok ◽  
Lisa Richter ◽  
...  

Abstract. The site selection procedure for a high-level radioactive waste repository in Germany is based on the Repository Site Selection Act (StandAG, 2017), which comprises three phases. In phase 2, the Federal Company for Radioactive Waste Disposal (BGE) will conduct surface exploration. Based on the exploratory findings, the further developed preliminary safety analyses, the common requirements and criteria, and socioeconomic potential analyses will be applied feeding into proposed sites for underground exploration. Commissioned by the BGE, the Federal Institute for Geosciences and Natural Resources (BGR) contributes to this procedure with the projects “GeoMePS” and “ZuBeMErk”, which compile and assess geoscientific and geophysical methods and programs for surface exploration. Their common goal is to develop recommendations for surface exploration of siting regions. For this purpose, the BGR has developed a systematic approach that includes (1) deducing 186 exploration targets (Kneuker, 2020) based on the requirements defined by StandAG, (2) compilation of geoscientific and geophysical exploration methods in a database structure, and (3) analysis of case studies of national and international exploration programs for high-level radioactive waste disposal. During step (2) the BGR developed the database “GeM-DB” which utilizes MS SQL Server 2017 and PHP scripts for a browser-based interface (Beilecke, 2021). Both lead to a highly customizable, user-friendly database enabling further adaptations, expansions and analyses of the contents. Merging the knowledge of about 100 BGR experts, the database currently comprises approx. 140 geoscientific and geophysical exploration methods, including basic information and essential metadata to evaluate the general applicability of the methods for surface exploration of the three defined host rocks (crystalline rock, claystone, rock salt). Additionally, the methods are rated according to their suitability for the previously defined exploration targets. An example for a method selection, which is suitable to target fault zones (exclusion criterion 2, StandAG) is given in Fig. 1. In step (3) the BGR screens national and international waste disposal programs exploring for crystalline rock, claystone, and rock salt and feeds the obtained information back into “GeM-DB”. The entire systematic approach of the projects “GeoMePS” and “ZuBeMErk” aims to develop recommendations for a non-destructive and minimally invasive surface exploration program of siting regions in Germany, regarding the lithological, structural, mechanical, and hydrogeological characterization of the different host rock formations.


2017 ◽  
Vol 36 (1) ◽  
pp. 116-141
Author(s):  
Andrea Candela

This paper critically considers the history of nuclear energy in Australia, placing particular emphasis on the strong debate about uranium mining and exporting which occurred between the late 1960s and early 1980s. Though this topic has been already analyzed by different historical studies and through numerous methodological approaches, some issues of the Australian as well as international ‘atomic debate’ which involved civil uses of nuclear power in the second half of the 20th century remain under-investigated. This article, for instance, focuses on the little-known and seldom popularized history of Synroc which, in the late 1970s, was presented as the ‘geological perspective’ to deal with radioactive waste disposal. The matters under discussion here are particularly important because of their links with some key issues still prevalent in the international nuclear debate, such as nuclear safety, atomic weapons proliferation and the safe disposal of nuclear wastes.


Sign in / Sign up

Export Citation Format

Share Document