scholarly journals Field measurements of methylglyoxal using proton transfer reaction time-of-flight mass spectrometry and comparison to the DNPH–HPLC–UV method

2018 ◽  
Vol 11 (10) ◽  
pp. 5729-5740 ◽  
Author(s):  
Vincent Michoud ◽  
Stéphane Sauvage ◽  
Thierry Léonardis ◽  
Isabelle Fronval ◽  
Alexandre Kukui ◽  
...  

Abstract. Methylglyoxal (MGLY) is an important atmospheric α-dicarbonyl species for which photolysis acts as a significant source of peroxy radicals, contributing to the oxidizing capacity of the atmosphere and, as such, the formation of secondary pollutants such as organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements. This study presents the first field measurements of MGLY by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) performed during the ChArMEx SOP2 field campaign. This campaign took place at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and high performance liquid chromatography (HPLC) with UV detection. PTR-ToF-MS and DNPH–HPLC measurements were compared to determine whether these techniques can perform reliable measurements of MGLY. Ambient time series revealed levels of MGLY ranging from 28 to 365 pptv, with a clear diurnal cycle due to elevated concentrations of primary biogenic species during the daytime, and its oxidation led to large production rates of MGLY. A scatter plot of the PTR-ToF-MS and DNPH–HPLC measurements indicates a reasonable correlation (R2=0.48) but a slope significantly lower than unity (0.58±0.05) and a significant intercept of 88.3±8.0 pptv. A careful investigation of the differences between the two techniques suggests that this disagreement is not due to spectrometric interferences from H3O+(H2O)3 or methyl ethyl ketone (or butanal) detected at m∕z 73.050 and m∕z 73.065, respectively, which are close to the MGLY m∕z of 73.029. The differences are more likely due to uncorrected sampling artifacts such as overestimated collection efficiency or loss of MGLY into the sampling line for the DNPH–HPLC technique or unknown isobaric interfering compounds such as acrylic acid and propanediol for the PTR-ToF-MS. Calculations of MGLY loss rates with respect to OH oxidation and direct photolysis indicate similar contributions for these two loss pathways.

2018 ◽  
Author(s):  
Vincent Michoud ◽  
Stéphane Sauvage ◽  
Thierry Léonardis ◽  
Isabelle Fronval ◽  
Alexandre Kukui ◽  
...  

Abstract. Methylglyoxal (MGLY) is an important atmospheric α-dicarbonyl species whose photolysis acts as a significant source of peroxy radicals, contributing to the oxidizing capacity of the atmosphere and, as such, the formation of secondary pollutants such as organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements. This study present, to the best of our knowledge, the first measurements of ambient MGLY using Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS). These measurements were performed during the ChArMEx SOP2 field campaign. This campaign took place at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and High Performance Liquide Chromatography (HPLC) with UV detection. PTR-ToFMS and DNPH-HPLC measurements were compared to determine whether these techniques can perform reliable measurements of MGLY. Ambient time series revealed levels of MGLY ranging from 28–365 pptv, with a clear diurnal cycle due to elevated concentrations of primary biogenic species during daytime, whose oxidation led to large production rates of MGLY. A scatter plot of the PTR-ToFMS and DNPH-HPLC measurements indicates a reasonable correlation (R2 = 0.48) but a slope significantly lower than unity (0.58 ± 0.05) and a significant intercept of 88.3 ± 8.0 pptv. A careful investigation of the differences between the two techniques suggests that this disagreement is not due to spectrometric interferences from H3O+(H2O)3, MEK (or butanal) detected at m/z 73.050 and m/z 73.065, respectively, which are close to the MGLY m/z of 73.029. The differences are more likely due to uncorrected sampling artefacts such as overestimated collection efficiency or loss of MGLY into the sampling line for the DNPH-HPLC technique or unknown isobaric interfering compounds such as acrylic acid and propanediol for the PTR-ToFMS. Calculations of MGLY loss rates with respect to OH-oxidation and direct photolysis indicate similar contributions for these two loss pathways.


2013 ◽  
pp. 89-116 ◽  
Author(s):  
Ingrid Kohl ◽  
Jens Herbig ◽  
Jürgen Dunkl ◽  
Armin Hansel ◽  
Martin Daniaux ◽  
...  

2015 ◽  
Vol 86 ◽  
pp. 182-191 ◽  
Author(s):  
Stefano Mancuso ◽  
Cosimo Taiti ◽  
Nadia Bazihizina ◽  
Corrado Costa ◽  
Paolo Menesatti ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e20419 ◽  
Author(s):  
Federico Brilli ◽  
Taina M. Ruuskanen ◽  
Ralf Schnitzhofer ◽  
Markus Müller ◽  
Martin Breitenlechner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document