atmospheric measurements
Recently Published Documents


TOTAL DOCUMENTS

710
(FIVE YEARS 210)

H-INDEX

50
(FIVE YEARS 7)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Päivi Aakko-Saksa ◽  
Niina Kuittinen ◽  
Timo Murtonen ◽  
Päivi Koponen ◽  
Minna Aurela ◽  
...  

Black carbon (BC) emissions intensify global warming and are linked to adverse health effects. The International Maritime Organization (IMO) considers the impact of BC emissions from international shipping. A prerequisite for the anticipated limits to BC emissions from marine engines is a reliable measurement method. The three candidate methods (photoacoustic spectroscopy (PAS), laser-induced incandescence (LII), and filter smoke number (FSN)) selected by the IMO were evaluated with extensive ship exhaust matrices obtained by different fuels, engines, and emission control devices. A few instruments targeted for atmospheric measurements were included as well. The BC concentrations were close to each other with the smoke meters (AVL 415S and 415SE), PAS (AVL MSS), LII (Artium-300), MAAP 5012, aethalometers (Magee AE-33 and AE-42), and EC (TOA). In most cases, the standard deviation between instruments was in the range of 5–15% at BC concentrations below 30 mg Sm−3. Some differences in the BC concentrations measured with these instruments were potentially related to the ratio of light-absorbing compounds to sulphates or to particle sizes and morphologies. In addition, calibrations, sampling, and correction of thermophoretic loss of BC explained differences in the BC results. However, overall differences in the BC results obtained with three candidate methods selected by the IMO were low despite challenging exhaust compositions from marine diesel engines. Findings will inform decision making on BC emission control from marine engines.


2021 ◽  
Author(s):  
Julia Windmiller ◽  
Bjorn Stevens ◽  
Henning Franke ◽  
Ilaria Quaglia ◽  
Katharina Stolla ◽  
...  

<p class="p1">The intertropical convergence zone (ITCZ) plays a central role for the tropical weather and climate and structures the large-scale circulation. As a result, the ITCZ has long been an intensively studied research topic, with most studies of the ITCZ focusing on its long-term and large-scale characteristics. However, recent modeling results have highlighted the role of storm-scale processes in the formation of the ITCZ, suggesting that our limited ability to represent these small-scale processes correctly may contribute to persistent errors in the representation of the ITCZ in climate models. Looking at the ITCZ on short spatial and temporal scales, even the question of where the low-level convergence in the ITCZ occurs appears to be unclear. Do the trade winds from the north and south meet in a narrow line of convergence, or are there two lines of convergence marking the northern and southern edges of the ITCZ? To answer this question, we performed measurements on board the German research vessel Sonne during the campaign "Mooring Rescue" in the tropical Atlantic in summer 2021. During the campaign, the thermodynamic and dynamical state of the atmosphere was measured by frequent radiosonde launches, which provided atmospheric profiles with high vertical resolution extending from the surface to the lower stratosphere. These measurements were supplemented by continuous measurements of the atmospheric boundary layer and lower free troposphere, including optical measurements of water vapor, aerosol, precipitation, wind speed and direction, and cloud base height. Here, we provide a brief overview of the atmospheric measurements and a preliminary assessment of the dynamic state observed during a north-south crossing of the ITCZ. The ship-based measurements were compared with long-term statistics from reanalysis data and satellite observations.<span class="Apple-converted-space"> </span></p>


MAUSAM ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 441-448
Author(s):  
K.E. GANESH ◽  
T.K. UMESH ◽  
B. NARASIMHAMURTHY

Atmospheric measurements in a continental, low latitude station Mysore (12.3° N) has been carried out, for the period December 2003 to June 2006. Measurements were made using a sunphotometer with five bands in the visible and near-infrared range of the solar spectrum. To bring out the wavelength dependence of Aerosol Optical Thickness (AOT) on atmospheric water vapour, typically two wavelength channels are being used, one at 500 nm and the other at 1020 nm. A linear dependence between AOT and water vapour on meteorologically calm days is the important observation made. Growth rate of AOT is found to be larger at shorter wavelength (500 nm) than that of the longer wavelength (1020 nm). A mass-plot representation is followed on monthly basis, which is nothing but the graphical plot of spectral AOT versus water vapour of the scans for all the clear sky days of a particular month. Further investigations reveal that some months exhibit a single trend of growth of AOT with water vapour whereas double trend is the scenario for other months. These results provide insight into the changes in the atmospheric aerosol characteristics with precipitable water vapour, which is the subject matter of this paper.


Author(s):  
Tia R Scarpelli ◽  
Daniel J Jacob ◽  
Michael D Moran ◽  
Frances Reuland ◽  
Deborah Gordon

Abstract Canada's anthropogenic methane emissions are reported annually to the United Nations Framework Convention on Climate Change (UNFCCC) through Canada's National Inventory Report (NIR). Evaluation of this policy-relevant inventory using observations of atmospheric methane requires prior information on the spatial distribution of emissions but that information is lacking in the NIR. Here we spatially allocate the NIR methane emissions for 2018 on a 0.1º x 0.1º grid (≈ 10 km x 10 km) for individual source sectors and subsectors, with further resolution by source type for the oil/gas sector, using an ensemble of national and provincial geospatial datasets and including facility-level information from Canada's Greenhouse Gas Reporting Program. The highest emissions are from oil/gas production and livestock in western Canada, and landfills in eastern Canada. We find 11 hotspots emitting more than 1 metric ton h-1 on the 0.1º x 0.1º grid. Oil sands mines in northeast Alberta contribute 3 of these hotspots even though oil sands contribute only 4% of national oil/gas emissions. Our gridded inventory shows large spatial differences with the EDGAR v5 inventory commonly used for inversions of atmospheric methane observations, which may reflect EDGAR's reliance on global geospatial datasets. Comparison of our spatially resolved inventory to atmospheric measurements in oil/gas production fields suggests that the NIR underestimates these emissions. We also find strong spatial overlap between oil/gas, livestock, and wetland emissions in western Canada that may complicate source attribution in inversions of atmospheric data.


2021 ◽  
Author(s):  
Phuc Thi Minh Ha ◽  
Yugo Kanaya ◽  
Fumikazu Taketani ◽  
Maria Dolores Andrés Hernández ◽  
Benjamin Schreiner ◽  
...  

Abstract. Nitrous acid (HONO) is an important atmospheric gas given its contribution to the cycles of NOx and HOx, but its role in global atmospheric photochemistry is not fully understood. This study, for the first time, implemented three pathways of HONO formation in the chemistry-climate model CHASER (MIROC-ESM) to explore three physical phenomena: gas-phase kinetic reactions (GRs), direct emission (EM), and heterogeneous reactions on cloud/aerosol particles (HRs). We evaluated the simulations by the atmospheric measurements from the OMI (Ozone Monitoring Instrument), EANET (Acid Deposition Monitoring Network in eastern Asia) / EMEP (European Monitoring and Evaluation Programme) ground-based stationary observations, observations from the ship R/V Mirai, and aircraft-based measurements by ATom1 (atmospheric tomography) and EMeRGe-Asia-2018 (Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global scales). We showed that the inclusion of the HONO chemistry in the modeling process reduces the model bias against the measurements for PM2.5, NO3−/HNO3, NO2, OH, O3, and CO, especially in the lower troposphere and the North Pacific (NP) region. We found that the retrieved global abundance of tropospheric HONO was 1.4 TgN. Of the three source pathways, HRs and EM contributed 63 % and 26 % to the net HONO production, respectively. We also observed that, reactions on the aerosol surfaces contributed larger amounts of HONO (51 %) than those on the cloud surfaces (12 %). The model exhibited significant negative biases for daytime HONO in the Asian off-coast region, compared with the airborne measurements by EMeRGe-Asia-2018, indicating the existence of unknown daytime HONO sources. Strengthening of aerosol uptake of NO2 near-surface and in the middle troposphere, cloud uptake, and direct HONO emission are all potential yet-unknown HONO sources. We also found that the simulated HONO abundance and its impact on NOx-O3 chemistry are sensitive to the yield of the heterogeneous conversion of NO2 to HONO (vs. HNO3). Inclusion of HONO reduces global tropospheric NOx (NO + NO2) levels by 20.4 %, thereby weakening the tropospheric oxidizing capacity, which in turn, increases CH4 lifetime (13 %) and CO abundance (8 %). HRs on the surfaces of cloud particles, which have been neglected in previous modeling studies, are the main drivers of these impacts. This effect is particularly salient for the substantial reductions of levels of OH (40–67 %) and O3 (30–45 %) in the NP region during summer given the significant reduction of NOx level (50–95 %). In contrast, HRs on aerosol surfaces in China (Beijing) enhance OH and O3 winter mean levels by 600–1700 % and 10–33 %, respectively, with regards to their minima in winter. Overall, our findings suggest that a global model that does not consider HONO heterogeneous mechanisms (especially HRs on cloud particle surfaces) may erroneously predict the effect of HONO in remote areas and polluted regions.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1608
Author(s):  
Fazhi Wang ◽  
Wenhe Du ◽  
Qi Yuan ◽  
Daosen Liu ◽  
Shuang Feng

The Earth’s atmosphere is the living environment in which we live and cannot escape. Atmospheric turbulence is a typical random inhomogeneous medium, which causes random fluctuations of both the amplitude and phase of optical wave propagating through it. Currently, it is widely accepted that there exists two kinds of turbulence in the aerosphere: one is Kolmogorov turbulence, and the other is non-Kolmogorov turbulence, which have been confirmed by both increasing experimental evidence and theoretical investigations. The results of atmospheric measurements have shown that the structure of atmospheric turbulence in the Earth’s atmosphere is composed of Kolmogorov turbulence at lower levels and non-Kolmogorov turbulence at higher levels. Since the time of Newton, people began to study optical wave propagation in atmospheric turbulence. In the early stage, optical wave propagation in Kolmogorov atmospheric turbulence was mainly studied and then optical wave propagation in non-Kolmogorov atmospheric turbulence was also studied. After more than half a century of efforts, the study of optical wave propagation in atmospheric turbulence has made great progress, and the theoretical results are also used to guide practical applications. On this basis, we summarize the development status and latest progress of propagation theory in atmospheric turbulence, mainly including propagation theory in conventional Kolmogorov turbulence and one in non-Kolmogorov atmospheric turbulence. In addition, the combined influence of Kolmogorov and non-Kolmogorov turbulence in Earth’s atmosphere on optical wave propagation is also summarized. This timely summary is very necessary and is of great significance for various applications and development in the aerospace field, where the Earth’s atmosphere is one part of many links.


2021 ◽  
Vol 13 (22) ◽  
pp. 4664
Author(s):  
John P. Leckey ◽  
Robert Damadeo ◽  
Charles A. Hill

The Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station (ISS) is widely accepted as a stable source for high-quality stratospheric ozone, aerosol, and water vapor measurements since it was installed on the ISS in 2017. The ISS is a unique platform that provides access for hosted payloads while furnishing infrastructure for power, uplink, downlink, etc. for instrument operations. The opportunities, risks, and challenges from operating on the ISS are described in addition to comprehensive lessons learned. In addition, SAGE IV is presented as an option for the future of the SAGE lineage where the lessons learned from SAGE III and technological advances have enabled the instrument to fit into a 6U CubeSat yielding a significantly smaller and cheaper form-factor to preserve the continuity of critical atmospheric measurements.


2021 ◽  
Author(s):  
Roland Vernooij ◽  
Ulrike Dusek ◽  
Maria Elena Popa ◽  
Peng Yao ◽  
Anupam Shaikat ◽  
...  

Abstract. Landscape fires are a significant contributor to atmospheric burdens of greenhouse gases and aerosols. Although many studies have looked at biomass burning products and their fate in the atmosphere, estimating and tracing atmospheric pollution from landscape fires based on atmospheric measurements is challenging due to the large variability in fuel composition and burning conditions. Stable carbon isotopes in biomass burning (BB) emissions can be used to trace the contribution of C3 plants (e.g., trees or shrubs) and C4 plants (e.g. savanna grasses) to various combustion products. However, there are still many uncertainties regarding changes in isotopic composition (also known as fractionation) of the emitted carbon compared to the burnt fuel during the pyrolysis and combustion processes. To study BB isotope fractionation, we performed a series of laboratory fire experiments in which we burned pure C3 and C4 plants as well as mixtures of the two. Using isotope ratio mass spectrometry (IRMS), we measured stable carbon isotope signatures in the pre-fire fuels and post-fire residual char, as well as in the CO2, CO, CH4, organic carbon (OC), and elemental carbon (EC) emissions, which together constitute over 98 % of the post-fire carbon. Our laboratory tests indicated substantial isotopic fractionation in combustion products compared to the fuel, which varied between the measured fire products. CO2, EC and residual char were the most reliable tracers of the fuel 13C signature. CO in particular showed a distinct dependence on burning conditions; flaming emissions were enriched in 13C compared to smouldering combustion emissions. For CH4 and OC, the fractionation was opposite for C3 emissions (13C-enriched) and C4 emissions (13C-depleted). This indicates that while it is possible to distinguish between fires that were dominated by either C3 or C4 fuels using these tracers, it is more complicated to quantify their relative contribution to a mixed-fuel-fire based on the δ13C signature of emissions. Besides laboratory experiments, we sampled gases and carbonaceous aerosols from prescribed fires in the Niassa special Reserve (NSR) in Mozambique, using an unmanned aerial system (UAS)-mounted sampling set-up. We also provide a range of C3 : C4 contributions to the fuel and measured the fuel isotopic signatures. While both OC and EC were useful tracers of the C3 to C4 fuel ratio in mixed fires in the lab, we found particularly OC to be depleted compared to the calculated fuel signal in the field experiments. This suggests that either our fuel measurements were incomprehensive and underestimated the C3 : C4 ratio in the field, or that other processes caused this depletion. Although additional field measurements are needed, our results indicate that C3 vs C4 source ratio estimation is possible with most BB products, albeit with varying uncertainty ranges.


2021 ◽  
Vol 15 (11) ◽  
pp. 5079-5098
Author(s):  
Alain Royer ◽  
Alexandre Roy ◽  
Sylvain Jutras ◽  
Alexandre Langlois

Abstract. Continuous and spatially distributed data of snow mass (water equivalent of snow cover, SWE) from automatic ground-based measurements are increasingly required for climate change studies and for hydrological applications (snow hydrological-model improvement and data assimilation). We present and compare four new-generation sensors, now commercialized, that are non-invasive and based on different radiations that interact with snow for SWE monitoring: cosmic-ray neutron probe (CRNP), gamma ray monitoring (GMON) scintillator, frequency-modulated continuous-wave radar (FMCW radar) at 24 GHz and global navigation satellite system (GNSS) receivers (GNSSr). All four techniques have relatively low power requirements, provide continuous and autonomous SWE measurements, and can be easily installed in remote areas. A performance assessment of their advantages, drawbacks and uncertainties is discussed from experimental comparisons and a literature review. Relative uncertainties are estimated to range between 9 % and 15 % when compared to manual in situ snow surveys that are also discussed. Results show the following. (1) CRNP can be operated in two modes of functioning: beneath the snow, it is the only system able to measure very deep snowpacks (> 2000 mm w.e.) with reasonable uncertainty across a wide range of measurements; CRNP placed above the snow allows for SWE measurements over a large footprint (∼ 20 ha) above a shallow snowpack. In both cases, CRNP needs ancillary atmospheric measurements for SWE retrieval. (2) GMON is the most mature instrument for snowpacks that are typically up to 800 mm w.e. Both CRNP (above snow) and GMON are sensitive to surface soil moisture. (3) FMCW radar needs auxiliary snow-depth measurements for SWE retrieval and is not recommended for automatic SWE monitoring (limited to dry snow). FMCW radar is very sensitive to wet snow, making it a very useful sensor for melt detection (e.g., wet avalanche forecasts). (4) GNSSr allows three key snowpack parameters to be estimated simultaneously: SWE (range: 0–1000 mm w.e.), snow depth and liquid water content, according to the retrieval algorithm that is used. Its low cost, compactness and low mass suggest a strong potential for GNSSr application in remote areas.


2021 ◽  
Author(s):  
Jens Mühle ◽  
Lambert J. M. Kuijpers ◽  
Kieran M. Stanley ◽  
Matthew Rigby ◽  
Luke M. Western ◽  
...  

Abstract. Emissions of the potent greenhouse gas perfluorocyclobutane (c-C4F8, PFC-318, octafluorocyclobutane) into the global atmosphere inferred from atmospheric measurements have been increasing sharply since the early 2000s. We find that these inferred emissions are highly correlated with the production of hydrochlorofluorocarbon-22 (HCFC-22, CHClF2) for feedstock (FS) uses, because almost all HCFC-22 FS is pyrolyzed to produce (poly)tetrafluoroethylene ((P)TFE, Teflon) and hexafluoropropylene (HFP), a process in which c-C4F8 is a known by-product, causing a significant fraction of global c-C4F8 emissions. We find a global emission factor of ~0.003 kg c-C4F8 per kg of HCFC-22 FS pyrolyzed. Mitigation of these c-C4F8 emissions, e.g., through process optimization, abatement, or different manufacturing processes, such as electrochemical fluorination, could reduce the climate impact of this industry. While it has been shown that c-C4F8 emissions from developing countries dominate global emissions, more atmospheric measurements and/or detailed process statistics are needed to quantify country to facility level c-C4F8 emissions.


Sign in / Sign up

Export Citation Format

Share Document