scholarly journals Supplementary material to "On the use of reference mass spectra for reducing uncertainty in source apportionment of solid fuel burning in ambient organic aerosol"

Author(s):  
Chunshui Lin ◽  
Darius Ceburnis ◽  
Anna Trubetskaya ◽  
Wei Xu ◽  
William Smith ◽  
...  
2021 ◽  
Vol 14 (10) ◽  
pp. 6905-6916
Author(s):  
Chunshui Lin ◽  
Darius Ceburnis ◽  
Anna Trubetskaya ◽  
Wei Xu ◽  
William Smith ◽  
...  

Abstract. Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by aerosol mass spectrometers. However, source apportionment of solid-fuel-burning emissions can be complicated by the use of different fuels, stoves, and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several heating stoves have been compared using an aerosol chemical speciation monitor (ACSM). The same samples of biomass briquettes and smokeless coal were burnt in a conventional stove and Ecodesign stove (Ecodesign refers to a stove conforming to EU Directive 2009/125/EC), while different batches of wood, peat, and smoky coal were also burnt in the conventional stove, and the OA mass spectra were compared to those previously obtained using a boiler stove. The results show that although certain ions (e.g., m/z 60) remain important markers for solid-fuel burning, the peak intensities obtained at specific m/z values in the normalized mass spectra were not constant with variations ranging from < 5 % to > 100 %. Using the OA mass spectra of peat, wood, and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits (the limits approach) in the positive matrix factorization (PMF) analysis with the Multilinear Engine algorithm (ME-2), the respective contributions of these fuels to ambient submicron aerosols during a winter period in Dublin, Ireland, were evaluated and compared with the conventional a-value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2 %–7 %, while relatively large uncertainties (8 %–29 %) were found for the a-value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs. 41 %) and wood (14 % vs. 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses compared to electricity and gas. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burnt in different stoves in real-world applications.


2021 ◽  
Author(s):  
Chunshui Lin ◽  
Darius Ceburnis ◽  
Anna Trubetskaya ◽  
Wei Xu ◽  
William Smith ◽  
...  

Abstract. Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by an aerosol chemical speciation monitor (ACSM). However. source apportionment of solid fuel burning emissions can be complicated by the use of different fuels, stoves and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves have been compared using an ACSM. The same samples of biomass briquettes and smokeless coal were burnt in a conventional and Ecodesign stove, while different batches of wood, peat, and smoky coal were also burnt in the conventional stove and the OA mass spectra compared to those previously obtained using a boiler stove. The results shows that although certain ions (e.g., m/z 60) remain important markers for solid fuel burning, the peak intensities obtained at specific m/z values were not constant with variations ranging from <5% to >100 %. Using the OA mass spectra of peat, wood and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits in ME-2 analysis (the limits approach), the respective contributions of these fuels to ambient sub-micron aerosols during a winter period in Dublin were evaluated and compared with the conventional a value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2–7 %, while relatively large uncertainties (8–29 %) were found for the a value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs 41 %) and wood (14 % vs 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burned in different stoves in real-world applications.


2011 ◽  
Vol 11 (4) ◽  
pp. 1603-1619 ◽  
Author(s):  
D. Liu ◽  
J. Allan ◽  
B. Corris ◽  
M. Flynn ◽  
E. Andrews ◽  
...  

Abstract. The experiment presented in this paper was conducted at the Holme Moss site, which is located in the southern Pennines region in Northwestern England during November–December 2006. The strong southwesterly wind during the experimental period, which enhanced the transport of urban pollutants from the conurbations of Greater Manchester and Liverpool, in addition to the seasonally increased nearby residential heating activities, made this site a receptor for pollutants from a range of sources. A factor analysis is applied to the mass spectra of organic matter (OM) measured by the Aerodyne Aerosol Mass Spectrometer (AMS) to attribute the pollutant sources. Besides the oxygenated organic aerosol (OOA), this site was found to contain a considerable fraction of primary organic aerosols (POA, mass fraction 50–70% within total mass of OM). The POA sources are attributed to be traffic emission and solid fuel burning, which are identified as hydrocarbon-like organic aerosol (HOA) and solid fuel organic aerosol (SFOA) respectively. There were strongly combined emissions of black carbon (BC) particles from both sources. The refractory BC component (rBC) was characterized by a single particle soot photometer. This site began to be influenced during the late morning by fresh traffic emissions, whereas solid fuel burning became dominant from late afternoon until night. A covariance analysis of rBC and POA was used to derive source specific emission factors of 1.61 μgHOA/μgrBC and 1.96 μgHOA/μgrBC. The absorbing properties of aerosols were characterized at multiple wavelengths (λ), and a stronger spectral dependence of absorption was observed when this site was significantly influenced by solid fuel burning. The rBC was estimated to contribute 3–16% of submicron aerosol mass. The single scattering albedo at λ = 700 nm (SSA700 nm) was significantly anti-correlated with the rBC mass fraction, but also associated with the BC mixing state. The BC incorporation/removal process therefore may play a role in modulating the radiative properties of aerosols at the site under the influence of fresh sources. Given that traffic and residential combustion of solid fuels are significant contributors of carbonaceous aerosols over Europe, these results provide important source-specific information on modeling the anthropogenic carbonaceous aerosols.


2021 ◽  
Author(s):  
Anna K. Tobler ◽  
Alicja Skiba ◽  
Francesco Canonaco ◽  
Griša Močnik ◽  
Pragati Rai ◽  
...  

2017 ◽  
Author(s):  
Carlo Bozzetti ◽  
Imad El Haddad ◽  
Dalia Salameh ◽  
Kaspar Rudolf Daellenbach ◽  
Paola Fermo ◽  
...  

2016 ◽  
Vol 40 (1) ◽  
pp. 145-161 ◽  
Author(s):  
Jeevan Lal Matawle ◽  
Shamsh Pervez ◽  
Manas Kanti Deb ◽  
Anjali Shrivastava ◽  
Suresh Tiwari

2010 ◽  
Vol 10 (10) ◽  
pp. 25243-25286
Author(s):  
D. Liu ◽  
J. Allan ◽  
B. Corris ◽  
M. Flynn ◽  
E. Andrews ◽  
...  

Abstract. The experiment presented in this paper was conducted at the Holme Moss site, which is located in the southern Pennines region in Northwestern England during November–December 2006. The strong southwesterly wind during the experimental period, which enhanced the transport of urban pollutants from the conurbations of Greater Manchester and Liverpool, in addition to the seasonally increased nearby residential heating activities, made this site a receptor for pollutants from a range of sources. A factor analysis is applied to the mass spectra of organic matter (OM) measured by the Aerodyne Aerosol Mass Spectrometer (AMS) to attribute the pollutant sources. Besides the oxygenated organic aerosol (OOA), this site was found to contain a considerable fraction of primary organic aerosols (POA, mass fraction 50–70% within total mass of OM), which are source attributed as traffic emission and solid fuel burning, and are identified as hydrocarbon-like organic aerosol (HOA) and solid fuel organic aerosol (SFOA) respectively. There were strongly combined emissions of black carbon (BC) particles from both sources, as the refractory BC component (rBC) was characterized by the single particle soot photometer. This site began to be influenced during the late morning by fresh traffic emissions, whereas solid fuel burning became dominant from late afternoon until night. A covariance analysis of rBC and POA was used to derive source specific emission factors of 1.61 μgHOA/μgrBC and 1.96 μgSFOA/μgrBC. The absorbing properties of aerosols were characterized at multiple wavelengths (λ), and a stronger spectral dependence of absorption was observed when this site was significantly influenced by solid fuel burning. The rBC was estimated to contribute 3–16% of submicron aerosol mass. The single scattering albedo at λ=550 nm (SSA550 nm) was significantly anti-correlated with the rBC mass fraction, but also associated with the BC mixing state. The BC incorporation/removal process therefore plays an important role on modulating the radiative properties of aerosols at the site under the influence of fresh sources. Given that traffic and residential combustion of solid fuels are significant contributors of carbonaceous aerosols over Europe, these results provide important source-specific information on modeling the anthropogenic carbonaceous aerosols.


Sign in / Sign up

Export Citation Format

Share Document