scholarly journals Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

2007 ◽  
Vol 25 (12) ◽  
pp. 2513-2527 ◽  
Author(s):  
B. Zhao ◽  
W. Wan ◽  
L. Liu ◽  
T. Mao ◽  
Z. Ren ◽  
...  

Abstract. In the present work we use the NASA-JPL global ionospheric maps of total electron content (TEC), firstly to construct TEC maps (TEC vs. magnetic local time MLT, and magnetic latitude MLAT) in the interval from 1999 to 2005. These TEC maps were, in turn, used to estimate the annual-to-mean amplitude ratio, A1, and the semiannual-to-mean amplitude ratio, A2, as well as the latitudinal symmetrical and asymmetrical parts, A' and A" of A1. Thus, we investigated in detail the TEC climatology from maps of these indices, with an emphasis on the quantitative presentation for local time and latitudinal changes in the seasonal, annual and semiannual anomalies of the ionospheric TEC. Then we took the TEC value at 14:00 LT to examine various anomalies at a global scale following the same procedure. Results reveal similar features appearing in NmF2, such as that the seasonal anomaly is more significant in the near-pole regions than in the far-pole regions and the reverse is true for the semiannual anomaly; the winter anomaly has least a chance to be observed at the South America and South Pacific areas. The most impressive feature is that the equinoctial asymmetry is most prominent at the East Asian and South Australian areas. Through the analysis of the TIMED GUVI columnar [O/N2] data, we have investigated to what extent the seasonal, annual and semiannual variations can be explained by their counterparts in [O/N2]. Results revealed that the [O/N2] variation is a major contributor to the daytime winter anomaly of TEC, and it also contributes to some of the semiannual and annual anomalies. The contribution to the anomalies unexplained by the [O/N2] data could possibly be due to the dynamics associated with thermospheric winds and electric fields.

2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


2020 ◽  
Vol 10 ◽  
pp. 11 ◽  
Author(s):  
Claudio Cesaroni ◽  
Luca Spogli ◽  
Angela Aragon-Angel ◽  
Michele Fiocca ◽  
Varuliator Dear ◽  
...  

We introduce a novel empirical model to forecast, 24 h in advance, the Total Electron Content (TEC) at global scale. The technique leverages on the Global Ionospheric Map (GIM), provided by the International GNSS Service (IGS), and applies a nonlinear autoregressive neural network with external input (NARX) to selected GIM grid points for the 24 h single-point TEC forecasting, taking into account the actual and forecasted geomagnetic conditions. To extend the forecasting at a global scale, the technique makes use of the NeQuick2 Model fed by an effective sunspot number R12 (R12eff), estimated by minimizing the root mean square error (RMSE) between NARX output and NeQuick2 applied at the same GIM grid points. The novel approach is able to reproduce the features of the ionosphere especially during disturbed periods. The performance of the forecasting approach is extensively tested under different geospatial conditions, against both TEC maps products by UPC (Universitat Politècnica de Catalunya) and independent TEC data from Jason-3 spacecraft. The testing results are very satisfactory in terms of RMSE, as it has been found to range between 3 and 5 TECu. RMSE depend on the latitude sectors, time of the day, geomagnetic conditions, and provide a statistical estimation of the accuracy of the 24-h forecasting technique even over the oceans. The validation of the forecasting during five geomagnetic storms reveals that the model performance is not deteriorated during disturbed periods. This 24-h empirical approach is currently implemented on the Ionosphere Prediction Service (IPS), a prototype platform to support different classes of GNSS users.


2020 ◽  
Author(s):  
Ilya Edemskiy ◽  
Ilya Edemskiy

<p>Localized enhancements of total electron content (TEC) are usually registered during magnetic storms and are often believed to be connected with storm enhanced density (SED) events. Investigating global ionospheric maps we found that such localized TEC enhancements (LTE) could be observed in Southern Hemisphere during both disturbed and quiet time with no clear dependence on parameters of near space. Analysis of occurrence of LTEs in the regions of Indian and Southern Atlantic Oceans showed that part of them (observed during magnetic storms and localized in subpolar latitudes) can be connected with SEDs. Since another part of subpolar LTEs is detected during relatively quiet conditions its generation mechanism should be different despite they have similar spatial distribution. Most of the enhancements are observed in middle latitudes and is detected during all the investigated years. The occurrence rate of LTEs hardly depends on solar activity and the most probable season for LTE detection is April-September (autumn-winter).</p><p>Here we investigate reasons of generation both midlatitudinal and subpolar LTEs trying to define the mechanisms of their generation in details.</p>


1992 ◽  
Vol 70 (7) ◽  
pp. 575-581 ◽  
Author(s):  
N. Jakowski ◽  
A. Jungstand ◽  
K. Schlegel ◽  
H. Kohl ◽  
K. Rinnert

The generation and propagation of ionospheric storms are studied by analyzing EISCAT radar, and vertical-sounding and total-electron-content data obtained under different geophysical conditions. Both, case studies as well as the average storm pattern of percentage deviations of different ionospheric parameters from their corresponding reference values such as total electron content, F2-layer critical frequency foF2, F2-layer height hmF2, and slab thickness τ indicate the action of a perturbation electric field during the first few hours during the onset phase of geomagnetic storms. Considering the onset phase of the storm on July 28–29, 1987 evidence has been found that high-latitude electric fields may penetrate to lower latitudes before the ring current has developed. In most cases this process is accompanied by a positive phase in the upper ionosphere and F2-layer ionization. Different mechanisms are assumed to be responsible for the daytime and nighttime behaviour, respectively. The negative phase propagates equatorward with velocities in the order of 70–350 m s−1 following a strong heating of the thermosphere and ionosphere due to the auroral electrojet.


2013 ◽  
Vol 19 (2) ◽  
pp. 227-246 ◽  
Author(s):  
Wagner Carrupt Machado ◽  
Edvaldo Simões da Fonseca Junior

Uma forma de se prever o conteúdo total de elétrons na direção vertical (VTEC - Vertical Total Electron Content) usando a arquitetura de redes neurais artificiais (RNA) denominada de perceptrons de múltiplas camadas (MLP - MultipLayer Percetrons) é apresentada e avaliada nesta pesquisa. As entradas do modelo foram definidas como sendo a posição dos pontos ionosféricos (IPP - Ionospheric Pierce Point) e o tempo universal (TU), enquanto que a saída é o VTEC. As variações sazonais e de períodos mais longos são levadas em conta através da atualização do treinamento diariamente. Testes foram conduzidos sobre uma área que abrange o Brasil e sua vizinhança considerando períodos de alta e baixa atividade solar. As RNA foram treinadas utilizando informações dos mapas globais da ionosfera (GIM - Global Ionospheric Maps) produzidos pelo serviço internacional do GNSS (IGS - International GNSS Service) das 72 horas anteriores à época de início da previsão. As RNA treinadas foram utilizadas para prever o VTEC por 72 horas (VTEC RNA). Os VTEC RNA foram comparados com os VTEC contidos nos GIM (VTEC GIM). A raiz do erro médio quadrático (RMS) da diferença entre o VTEC GIM e o VTEC RNA variou de 1,4 a 10,7 unidades de TEC (TECU). O erro relativo mostra que a RNA proposta foi capaz de prever o VTEC com 70 a 85% de acerto.


2018 ◽  
Vol 8 ◽  
pp. A45 ◽  
Author(s):  
Yury V. Yasyukevich ◽  
Anna S. Yasyukevich ◽  
Konstantin G. Ratovsky ◽  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
...  

For the first time, by using a regression procedure, we analyzed the solar activity dependence of the winter anomaly intensity in the ionospheric F2-layer peak electron density (Nm F2) and in the Total Electron Content (TEC) on a global scale. We used the data from global ionospheric maps for 1998–2015, from GPS radio occultation observations with COSMIC, CHAMP, and GRACE satellites for 2001–2015, and ground-based ionosonde data. The fundamental features of the winter anomaly in Nm F2 and in TEC (spatial distribution and solar activity dependence) are similar for these parameters. We determined the regions, where the winter anomaly may be observed in principle, and the solar activity level, at which the winter anomaly may be recorded in different sectors. A growth in geomagnetic disturbance or in the solar activity level is shown to facilitate the winter anomaly intensity increase. Longitudinal variations in the winter anomaly intensity do not conform partly to the generally accepted Rishbeth theory. We consider the obtained results in the context of spatial and solar cycle variations in O/N2 ratio and thermospheric meridional wind. Additionally, we briefly discuss different definitions of the winter anomaly.


2019 ◽  
Author(s):  
Patrick Mungufeni ◽  
Claudia Stolle ◽  
Sripathi Samireddipalle ◽  
Yenca Migoya-Orué ◽  
Yong Ha Kim

Abstract. This study developed a model of Total Electron Content (TEC) over the African region. The TEC data were derived from radio occultation measurements done by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Geomagnetically quiet time (Kp  −20 nT) data during the years 2008–2011, and 2013–2017 were binned according to local time, seasons, solar flux level, geographic longitude, and dip latitude. Cubic B splines were fitted to the binned data to obtain the model. The model was validated using TEC data of the years 2012 and 2018. The validation exercise revealed that, approximation of observed TEC data by our model produces root mean squared error of 4.8 TECU. Moreover, the modeled TEC data correlated highly with the observed TEC data (r = 0.93). Our model is the first attempt to predict TECs over the entire African region by using extensive COSMIC TEC measurements. Due to the extensive input data and the good modeling technique, we were able to reproduce the well-known features such as local time, seasonal, solar activity, and spatial variations of TEC over the African region.


2019 ◽  
Vol 13 (5) ◽  
pp. 884-891
Author(s):  
M. V. Klimenko ◽  
V. V. Klimenko ◽  
I. E. Zakharenkova ◽  
K. G. Ratovsky ◽  
A. S. Yasyukevich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document