winter anomaly
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 13 (22) ◽  
pp. 4559
Author(s):  
Marjolijn Adolfs ◽  
Mohammed Mainul Hoque

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented here. The NWA is visible in the Northern Hemisphere for the American sector and in the Southern Hemisphere for the Asian longitude sector under solar minimum conditions. During the NWA, the mean ionization level is found to be higher in the winter nights compared to the summer nights. The approach proposed here is a fully connected neural network (NN) model trained with Global Ionosphere Maps (GIMs) data from the last two solar cycles. The day of year, universal time, geographic longitude, geomagnetic latitude, solar zenith angle, and solar activity proxy, F10.7, were used as the input parameters for the model. The model was tested with independent TEC datasets from the years 2015 and 2020, representing high solar activity (HSA) and low solar activity (LSA) conditions. Our investigation shows that the root mean squared (RMS) deviations are in the order of 6 and 2.5 TEC units during HSA and LSA period, respectively. Additionally, NN model results were compared with another model, the Neustrelitz TEC Model (NTCM). We found that the neural network model outperformed the NTCM by approximately 1 TEC unit. More importantly, the NN model can reproduce the evolution of the NWA effect during low solar activity, whereas the NTCM model cannot reproduce such effect in the TEC variation.


2021 ◽  
Vol 67 (1) ◽  
pp. 150-162
Author(s):  
F. Azpilicueta ◽  
B. Nava
Keyword(s):  

2019 ◽  
Vol 11 (22) ◽  
pp. 2686 ◽  
Author(s):  
Weihua Bai ◽  
Guangyuan Tan ◽  
Yueqiang Sun ◽  
Junming Xia ◽  
Cheng Cheng ◽  
...  

With the accumulation of the ionospheric radio occultation (IRO) data observed by Global Navigation Satellite System (GNSS) occultation sounder (GNOS) onboard FengYun-3C (FY3C) satellite, it is possible to use GNOS IRO data for ionospheric climatology research. Therefore, this work aims to validate the feasibility of FY3C/GNOS IRO products in climatology research by comparison with that of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), laying the foundation for its application in climatology study. Since previous verification works of FY3C/GNOS were done by comparison with ionosondes, this work matched NmF2/hmF2 of FY3C/GNOS and COSMIC into data pairs to verify the profile-level accuracy of FY3C/GNOS IRO data. The statistical results show that the overall correlation coefficients of both NmF2 and hmF2 are above 0.9, the overall bias and std of NmF2 differences between FY3C/GNOS and COSMIC are −2.19% and 17.48%, respectively, and the bias and std of hmF2 differences are −3.29 and 18.01 km, respectively, indicating a high profile-level precision consistency between FY3C/GNOS and COSMIC. In ionospheric climatology comparison, we divided NmF2/hmF2 of FY3C/GNOS into four seasons, then presented the season median NmF2/hmF2 in 5° × 10° grids and compared them with that of COSMIC. The results show that the ionospheric climatological characteristics of FY3C/GNOS and COSMIC are highly matched, both showing the typical climatological features such as equatorial ionosphere anomaly (EIA), winter anomaly, semiannual anomaly, Weddell Sea anomaly (WSA) and so on, though minor discrepancies do exist like the differences in magnitude of longitude peak structures and WSA, which verifies the reliability of FY3C/GNOS IRO products in ionospheric climatology research.


2019 ◽  
Vol 64 (10) ◽  
pp. 2046-2063
Author(s):  
G.I. Gordiyenko ◽  
O.A. Maltseva ◽  
F. Arikan ◽  
A.F. Yakovets
Keyword(s):  

2019 ◽  
Vol 13 (5) ◽  
pp. 884-891
Author(s):  
M. V. Klimenko ◽  
V. V. Klimenko ◽  
I. E. Zakharenkova ◽  
K. G. Ratovsky ◽  
A. S. Yasyukevich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document