scholarly journals Influence of gravity waves on the climatology of high-altitude Martian carbon dioxide ice clouds

2018 ◽  
Vol 36 (6) ◽  
pp. 1631-1646 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

Abstract. Carbon dioxide (CO2) ice clouds have been routinely observed in the middle atmosphere of Mars. However, there are still uncertainties concerning physical mechanisms that control their altitude, geographical, and seasonal distributions. Using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating a state-of-the-art whole atmosphere subgrid-scale gravity wave parameterization (Yiğit et al., 2008), we demonstrate that internal gravity waves generated by lower atmospheric weather processes have a wide-reaching impact on the Martian climate. Globally, GWs cool the upper atmosphere of Mars by ∼10 % and facilitate high-altitude CO2 ice cloud formation. CO2 ice cloud seasonal variations in the mesosphere and the mesopause region appreciably coincide with the spatio-temporal variations of GW effects, providing insight into the observed distribution of clouds. Our results suggest that GW propagation and dissipation constitute a necessary physical mechanism for CO2 ice cloud formation in the Martian upper atmosphere during all seasons.

2018 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

Abstract. Carbon dioxide (CO2) ice clouds have been routinely observed in the middle atmosphere of Mars. However, there are still uncertainties concerning physical mechanisms that control their altitude, geographical, and seasonal distributions. Using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating a state-of-the-art whole atmosphere subgrid-scale gravity wave parameterization (Yiğit et al., 2008), we demonstrate that internal gravity waves generated by lower atmospheric weather processes have wide reaching impact on the Martian climate. Globally, GWs cool the upper atmosphere of Mars by ~10 % and facilitate high-altitude CO2 ice cloud formation. CO2 ice cloud seasonal variations in the mesosphere and the mesopause region appreciably coincide with the spatio-temporal variations of GW effects, providing insight into the observed distribution of clouds. Our results suggest that GW propagation and dissipation constitute a necessary physical mechanism for CO2 ice cloud formation in the Martian upper atmosphere during all seasons.


2015 ◽  
Vol 8 (7) ◽  
pp. 5643-5670 ◽  
Author(s):  
A. V. Koval ◽  
N. M. Gavrilov ◽  
A. I. Pogoreltsev ◽  
E. N. Savenkova

Abstract. Many atmospheric global circulation models have large biases in predicting meridional and vertical winds and fluxes of gas species in remote regions such as the middle and upper atmosphere. In this study, we make sensitivity simulations to recognize the role of vital processes associated with dynamical coupling between different atmospheric layers, namely dynamical and thermal impacts of mesoscale orographic gravity waves (OGWs) generated by the Earth's topography and changes from the easterly to westerly QBO phases in the lower equatorial atmosphere. We improved parameterizations of OGW dynamical and thermal effects and QBO flows and implemented them into a general circulation model of the middle and upper atmosphere used in different countries. With this model, we study the sensitivity of meridional circulation and vertical velocity to stationary OGWs and to changes in QBO phases at altitudes up to 100 km in January. We also considered respective changes in vertical ozone fluxes in the atmosphere. Accounting stationary OGW effects gives changes up to 40 % in the meridional velocity and associated ozone fluxes in the stratosphere. Transitions from the easterly to westerly QBO phase in tropics may significantly alter the meridional and vertical circulation of the middle atmosphere at middle and high latitudes: up to 60 % from the peak respective values. The improved parameterizations of OGW and QBO effects have impacts on other features of the general circulation model, improving the simulation of general circulation, planetary and tidal wave coupling in the lower, middle and upper atmosphere.


Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Manfred Ern

Atmospheric gravity waves (GWs) are generated in the lower atmosphere by various weather phenomena. They propagate upward, carry energy and momentum to higher altitudes, and appreciably influence the general circulation upon depositing them in the middle and upper atmosphere. We use a three-dimensional first-principle general circulation model (GCM) with implemented nonlinear whole atmosphere GW parameterization to study the global climatology of wave activity and produced effects at altitudes up to the upper thermosphere. The numerical experiments were guided by the GW momentum fluxes and temperature variances as measured in 2010 by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument onboard NASA’s TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite. This includes the latitudinal dependence and magnitude of GW activity in the lower stratosphere for the boreal summer season. The modeling results were compared to the SABER temperature and total absolute momentum flux and Upper Atmosphere Research Satellite (UARS) data in the mesosphere and lower thermosphere. Simulations suggest that, in order to reproduce the observed circulation and wave activity in the middle atmosphere, GW fluxes that are smaller than observed fluxes have to be used at the source level in the lower atmosphere. This is because observations contain a broader spectrum of GWs, while parameterizations capture only a portion relevant to the middle and upper atmosphere dynamics. Accounting for the latitudinal variations of the source appreciably improves simulations.


2016 ◽  
Vol 73 (3) ◽  
pp. 1335-1349 ◽  
Author(s):  
Simon P. Alexander ◽  
Kaoru Sato ◽  
Shingo Watanabe ◽  
Yoshio Kawatani ◽  
Damian J. Murphy

Abstract Southern Hemisphere extratropical gravity wave activity is examined using simulations from a free-running middle-atmosphere general circulation model called Kanto that contains no gravity wave parameterizations. The total absolute gravity wave momentum flux (MF) and its intermittency, diagnosed by the Gini coefficient, are examined during January and July. The MF and intermittency results calculated from the Kanto model agree well with results from satellite limb and superpressure balloon observations. The analysis of the Kanto model simulations indicates the following results. Nonorographic gravity waves are generated in Kanto in the frontal regions of extratropical depressions and around tropopause-level jets. Regions with lower (higher) intermittency in the July midstratosphere become more (less) intermittent by the mesosphere as a result of lower-level wave removal. The gravity wave intermittency is low and nearly homogeneous throughout the SH middle atmosphere during January. This indicates that nonorographic waves dominate at this time of year, with sources including continental convection as well as oceanic depressions. Most of the zonal-mean MF at 40°–65°S in January and July is due to gravity waves located above the oceans. The zonal-mean MF at lower latitudes in both months has a larger contribution from the land regions but the fraction above the oceans remains larger.


2012 ◽  
Vol 69 (4) ◽  
pp. 1378-1396 ◽  
Author(s):  
Kaoru Sato ◽  
Satoshi Tateno ◽  
Shingo Watanabe ◽  
Yoshio Kawatani

Abstract Gravity wave characteristics in the middle- to high-latitude Southern Hemisphere are analyzed using simulation data over 3 yr from a high-resolution middle-atmosphere general circulation model without using any gravity wave parameterizations. Gravity waves have large amplitudes in winter and are mainly distributed in the region surrounding the polar vortex in the middle and upper stratosphere, while the gravity wave energy is generally weak in summer. The wave energy distribution in winter is not zonally uniform, but it is large leeward of the southern Andes and Antarctic Peninsula. Linear theory in the three-dimensional framework indicates that orographic gravity waves are advected leeward significantly by the mean wind component perpendicular to the wavenumber vector. Results of ray-tracing and cross-correlation analyses are consistent with this theoretical expectation. The leeward energy propagation extends to several thousand kilometers, which explains part of the gravity wave distribution around the polar vortex in winter. This result indicates that orographic gravity waves can affect the mean winds at horizontal locations that are far distant from the source mountains. Another interesting feature is a significant downward energy flux in winter, which is observed in the lower stratosphere to the south of the southern Andes. The frequency of the downward energy flux is positively correlated with the gravity wave energy over the southern Andes. Partial reflection from a rapid increase in static stability around 10 hPa and/or gravity wave generation through nonlinear processes are possible mechanisms to explain the downward energy flux.


2015 ◽  
Vol 42 (11) ◽  
pp. 4294-4300 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

2009 ◽  
Vol 66 (5) ◽  
pp. 1434-1449 ◽  
Author(s):  
Erich Becker ◽  
Charles McLandress

Abstract The standard Doppler spread parameterization of gravity waves, which was proposed by C.-O. Hines and has been applied in a number of middle atmosphere general circulation models, is extended by the inclusion of all effects associated with vertical diffusion. Here the Wentzel–Kramers–Brillouin (WKB) approximation is employed to calculate the vertical propagation of the wave spectrum in the presence of wave damping. According to the scale interaction between quasi-stationary turbulence and the larger nonturbulent flow, all vertical diffusion applied to the resolved flow should damp the parameterized gravity waves as well. Hence, the unobliterated part of the gravity wave spectrum is subject to diffusive damping by the following processes: 1) the background diffusion derived from the model’s boundary layer vertical diffusion scheme, which may extend into the middle atmosphere, 2) molecular diffusion, and 3) the turbulent diffusion resulting from the truncation of the gravity wave spectrum by Doppler spreading, which thus feeds back on the unobliterated gravity waves. The extended Doppler spread parameterization is examined using perpetual July simulations performed with a mechanistic general circulation model. For reasonable parameter settings, the convergence of the potential temperature flux cannot be neglected in the sensible heat budget, especially in the thermosphere. Less gravity wave flux enters the model thermosphere when vertical diffusion is included, thus avoiding the need for artificial means to control the parameterized gravity waves in the upper atmosphere. The zonal wind in the tropical middle and upper atmosphere is found to be especially sensitive to gravity wave damping by diffusion.


2020 ◽  
Vol 12 (5) ◽  
pp. 803-815
Author(s):  
B. N. Chetverushkin ◽  
I. V. Mingalev ◽  
E. A. Fedotova ◽  
K. G. Orlov ◽  
V. M. Chechetkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document