scholarly journals Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis

2020 ◽  
Vol 17 (7) ◽  
pp. 1745-1763 ◽  
Author(s):  
Sonja Geilert ◽  
Patricia Grasse ◽  
Kristin Doering ◽  
Klaus Wallmann ◽  
Claudia Ehlert ◽  
...  

Abstract. Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.

2020 ◽  
Author(s):  
Sonja Geilert ◽  
Patricia Grasse ◽  
Kristin Doering ◽  
Klaus Wallmann ◽  
Claudia Ehlert ◽  
...  

Abstract. Benthic fluxes of dissolved silica (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silica dissolved in sediment pore waters such that the determination of pore water δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform averaging +1.2 ± 0.1 ‰ (1SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0 ± 0.5 ‰, 1SD), while pore fluids close to the hydrothermal vent field are higher (+2.0 ± 0.2 ‰, 1SD). Reactive transport modelling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ however, additional dissolution of isotopically depleted Si minerals (e.g. clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures while precipitation of authigenic aluminosilicates seems to be hampered by high water / rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silica cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silica cycle.


2018 ◽  
Vol 15 (18) ◽  
pp. 5715-5731 ◽  
Author(s):  
Sonja Geilert ◽  
Christian Hensen ◽  
Mark Schmidt ◽  
Volker Liebetrau ◽  
Florian Scholz ◽  
...  

Abstract. Magmatic sill intrusions into organic-rich sediments cause the release of thermogenic CH4 and CO2. Pore fluids from the Guaymas Basin (Gulf of California), a sedimentary basin with recent magmatic activity, were investigated to constrain the link between sill intrusions and fluid seepage as well as the timing of sill-induced hydrothermal activity. Sampling sites were close to a hydrothermal vent field at the northern rift axis and at cold seeps located up to 30 km away from the rift. Pore fluids close to the active hydrothermal vent field showed a slight imprint by hydrothermal fluids and indicated a shallow circulation system transporting seawater to the hydrothermal catchment area. Geochemical data of pore fluids at cold seeps showed a mainly ambient diagenetic fluid composition without any imprint related to high temperature processes at greater depth. Seep communities at the seafloor were mainly sustained by microbial methane, which rose along pathways formed earlier by hydrothermal activity, driving the anaerobic oxidation of methane (AOM) and the formation of authigenic carbonates. Overall, our data from the cold seep sites suggest that at present, sill-induced hydrothermalism is not active away from the ridge axis, and the vigorous venting of hydrothermal fluids is restricted to the ridge axis. Using the sediment thickness above extinct conduits and carbonate dating, we calculated that deep fluid and thermogenic gas flow ceased 28 to 7 kyr ago. These findings imply a short lifetime of hydrothermal systems, limiting the time of unhindered carbon release as suggested in previous modeling studies. Consequently, activation and deactivation mechanisms of these systems need to be better constrained for the use in climate modeling approaches.


Oceanology ◽  
2008 ◽  
Vol 48 (5) ◽  
pp. 679-700 ◽  
Author(s):  
Yu. A. Bogdanov ◽  
A. Yu. Lein ◽  
V. V. Maslennikov ◽  
Syaoli Li ◽  
A. A. Ul’yanov

2011 ◽  
Vol 77 (3) ◽  
pp. 577-589 ◽  
Author(s):  
Anders Lanzén ◽  
Steffen L. Jørgensen ◽  
Mia M. Bengtsson ◽  
Inge Jonassen ◽  
Lise Øvreås ◽  
...  

2011 ◽  
Vol 76 (3) ◽  
pp. 524-540 ◽  
Author(s):  
Valentin Crépeau ◽  
Marie-Anne Cambon Bonavita ◽  
Françoise Lesongeur ◽  
Henintsoa Randrianalivelo ◽  
Pierre-Marie Sarradin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document