sulfide ores
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 78)

H-INDEX

33
(FIVE YEARS 4)

Author(s):  
T.N. Matveyeva ◽  
L.B. Lantsova ◽  
O.I. Gladysheva

Monomineral flotation results showed that the use of a new reagent S-cyanoethyl N, N-diethyldithiocarbamate enhances the flotation activity of chalcopyrite, in contrast to flotation with butyl xanthate, and reduced the flotation ability of arsenopyrite, which makes this reagent promising for its use in the selective flotation of complex sulfide ores.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Tien Dung NGUYEN ◽  
Khac Du NGUYEN ◽  
Ngoc Thom NGUYEN

The Pb-Zn mineralization in the Cho Don - Cho Dien ore districts often occurs in 2 types: (1)oxidized ore near to the surface and (2) sulfide ore at deeper section. Based on microscopic observations,sulfide ores can be divided into sphalerite-galena-pyrite and/or galena-sphalerite mineralization types. Toexamine the geochemical features of the Pb-Zn ores, SEM-EDX and ICP-MS analytical methods wereperformed in this study. Previous δ34S data of Pb-Zn concentrates, and sulfide minerals from variousdeposits suggest that the Pb-Zn ore-forming fluids might be related to the felsic-granitic magmaticactivities rather than a genesis of stratiform type. Geochemical data show that the major, minor, and traceelement compositions of lead-zinc ores have wide ranges of variation even in each deposit. The sulfideores are generally higher in economic components than those in the oxidized ores. The positivecorrelations between Pb-Ag can be found in the entire dataset, whereas excellent Zn-Cd correlation canonly be observed from Cho Don ore samples. Apart from the principal components (Pb and Zn), the oresalso contain other accompanying elements that supply high-technological manufacturing industries. Ofwhich As, Cu, Ag, Sb, and Cd could be potential by-products and can be extracted during smelting Pb/Znconcentrate processes, and need more detailed studies for every deposit.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1359
Author(s):  
Gloria I. Dávila-Pulido ◽  
Adrián A. González-Ibarra ◽  
Mitzué Garza-García ◽  
Danay A. Charles

The use of untreated recycled water has negative effects in the flotation of zinc sulfide ores due to the presence of dissolved species, such as magnesium and calcium. Although it has been found that magnesium is a more potent depressant than calcium, it has not been investigated in this role or for the effect of adding sodium carbonate. The results of an investigation to evaluate the effect of magnesium on the hydrophobicity of Cu-activated sphalerite conditioned with Sodium Isopropyl Xanthate (SIPX) are presented. Zeta potential of natural and Cu-activated sphalerite as a function of the conditioning pH and Cu(II) concentration, respectively, was first evaluated. Later, the effect of pH and presence of magnesium on the contact angle of Cu-activated sphalerite conditioned with SIPX was studied; it was also evaluated the effect of sodium carbonate to counteract the effect of magnesium. Cu-activation enhances the zeta potential of sphalerite up to a concentration of 5 mg/L. Contact angle tests, thermodynamic simulation, and surface analysis showed that magnesium hydroxide precipitates on the sphalerite surface at pH 9.6, decreasing its hydrophobicity. Addition of sodium carbonate as alkalinizing agent precipitates the magnesium in the form of a species that remained dispersed in the bulk solution, favoring the contact angle of Cu-activated sphalerite and, consequently, its hydrophobicity. It is concluded that the use of sodium carbonate as alkalinizing agent favors the precipitation of magnesium as hydromagnesite (Mg5(OH)2(CO3)4∙4H2O) instead of hydroxide allowing the recovery of sphalerite.


2021 ◽  
Vol 174 ◽  
pp. 107235
Author(s):  
Laura J. Swinkels ◽  
Mathias Burisch ◽  
Constantin M. Rossberg ◽  
Marcus Oelze ◽  
Jens Gutzmer ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (12) ◽  
pp. 2461
Author(s):  
Tatiana Abashina ◽  
Alyona Yachkula ◽  
Elena Kaparullina ◽  
Mikhail Vainshtein

Hydrometallurgical production of valuable and non-ferrous metals is traditionally accompanied with acid waste effluents/acid mine drainage leading to acidification of the mining areas. The traditional cause of this pollution is the well-known technology based on the recovery of metals with acid solutions and the application of strong acidophilic leaching bacteria for the oxidation of sulfide ores. In our experiments, we used neutrophilic autotrophic bacteria (NAB) stimulated with formic acid or coupled with acidophilic bacteria. The first approach was based on using formic acid as an energetic substrate by autotrophic bacteria. In the second case, the NAB provided initial biogenic acidification for the following growth of the inoculated acidophilic bacteria. Our experiments resulted in increased nickel recovery from the low-grade sulfide ores, which was provided by the NAB in a medium supplemented with formic acid. Bioleaching resulted in 1116 mg Ni/L (69.75%) in the medium with formate and only 35.4 mg Ni/L without formate in 43 days. As a whole, our bench scale experiments showed that the stimulated NAB can be effective at pH 7–5. Partially replacing sulfuric acid with formic acid could also give benefits via the following natural degradation of acid wastes. As a whole, this approach is more environmentally friendly than conventional bioleaching techniques.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1258
Author(s):  
Valery Kalugin ◽  
Viktor Gusev ◽  
Nadezhda Tolstykh ◽  
Andrey Lavrenchuk ◽  
Elena Nigmatulina

Pd-rich pentlandite (PdPn) along with ore-forming pentlandite (Pn) occurs in the cubanite and chalcopyrite massive sulfide ores in the EM-7 well of the Southern-2 ore body of the Talnakh deposit. PdPn forms groups of small grains and comprises marginal areas in large crystals of Pn. The palladium content in PdPn reaches up to 11.26 wt.%. EDS elemental mapping and a contour map of palladium concentrations indicate distinct variations in the palladium content within and between individual grains. Palladium distribution in the large grains is uneven and non-zoned. PdPn was formed as the result of a superimposed process, which is not associated with either the sulfide liquid crystallization or the subsolidus transformations of sulfides. Deming regression calculations demonstrated the isomorphic substitution character of Ni by 0.71 Pd and 0.30 Fe (apfu), leading to PdPn occurrence. The replacement of Ni by Fe may also indicate a change in sulfur fugacity, compared to that taking place during the crystallization of the primary Pn. The transformation of Pn into PdPn could have occurred under the influence of a Pd-bearing fluid, which separated from the crystallizing body of the massive sulfide ores.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6676
Author(s):  
Zhe Wang ◽  
Jun Yao ◽  
Mojca Bavcon Kralj ◽  
Darko Dolenc ◽  
Polonca Trebše

Flotation collector O-isopropyl N-ethylthionocarbamate (IPETC) is widely used for separation of sulfide ores. Its removal from water by several oxidation processes was studied. Photocatalytic oxidation with air in the presence of iron salts, utilizing solar irradiation or artificial UV-A light is very efficient. Oxidation leads through the formation of O-isopropyl N-ethylcarbamate and several other reaction intermediates to total decomposition of organic compound in the final stage in 1 day. Similar results were obtained with a Fenton type oxidation with hydrogen peroxide and iron salts. Treatment with sodium hypochlorite yields mainly O-isopropyl N-ethylcarbamate. The formation of this compound in wastewaters can be of concern, since simple alkyl carbamates are cancer suspect agents.


Author(s):  
N.I. Akinin ◽  
◽  
A.S. Garmashov ◽  
V.V. Rudomazin ◽  
◽  
...  

The results are presented concerning improving the thermostatic method for studying the chemical compatibility of modern industrial emulsion explosives based on the ammonium nitrate with surrounding materials, the increased reactivity of which can lead to spontaneous ignition and even explosion. An assessment of the compatibility of emulsion explosives with sulphide ores was conducted using an original thermocouple methodology developed at the D. Mendeleyev University of Chemical Technology of Russia, fixation of the thermal effects of the interaction of shell-free explosives based on the ammonium nitrate with sulfide minerals. Improved thermocouple method allows to determine chemical compatibility of the industrial explosives with the reactive rocks. It is distinguished by the possibility of continuous recording of the thermocouple measurements during tests using an oscilloscope and combines the reliability of the results with small laboratory weights of the test samples (no more than 20 g, which ensures safety testing). Temperature measurement accuracy is ± 2 °С. It is concluded that the method used is able to identify the cases of the most dangerous interaction from the practice point of view using the emulsion explosives when the pyrite content in the ore exceeds 85 %. The results of experiments on the applicability of thermocouple measurements to testing low-activity rocks, highly reactive pyrite ores, mixed sulfide ores of medium activity, as well as on the identification of the main regularities of heat release during the interaction of emulsion explosives with the sulfide ores are considered.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1218
Author(s):  
İlkay B. Can ◽  
Seda Özçelik ◽  
Zafir Ekmekçi

Pyrite particles, having framboidal/altered texture, are known to significantly affect pulp chemistry and adversely affect flotation performance. Therefore, the main objectives of this study were to demonstrate influence of pyrite mineralogy on the flotation of copper (sulphidic) ores and develop alternative conditions to improve the performance. Two copper ore samples (Ore A and Ore B) having different textural/modal mineralogy and flotation characteristics were taken from different zones of the same ore deposit. Ore B contained framboidal pyrite and altered pyrite/marcasite, which is considered the main reason for the low flotation performance in both copper and pyrite flotation sections of the process plant. Flotation tests were conducted under different conditions using the two ore samples and a 50:50 blend. The results showed that Ore A could be concentrated under the base conditions, as applied in the existing flotation plant. On the other hand, Ore B did not respond to the base conditions and a copper recovery of only 5% could be obtained. Besides, blending Ore B with Ore A negatively affected the flotation behavior of Ore A. An alternative flotation chemistry was applied on Ore B using Na2S for surface cleaning and Na-Metabisulfite (MBS) for pyrite depression in the copper flotation stage. The surface cleaning reduced the rate of oxidation of the framboidal pyrite in Ore B. As a result, the copper recovery could be increased to 52% Cu for Ore B, and 65% for the mixed ore sample.


2021 ◽  
pp. 1-17
Author(s):  
Mohammad Hossein Karimi Darvanjooghi ◽  
Sara Magdouli ◽  
Satinder Kaur Brar ◽  
Hadi Abdollahi ◽  
Mehdi Zolfaghari
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document