scholarly journals The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer

2021 ◽  
Vol 18 (4) ◽  
pp. 1395-1406
Author(s):  
Michael Lintner ◽  
Bianca Lintner ◽  
Wolfgang Wanek ◽  
Nina Keul ◽  
Petra Heinz

Abstract. Foraminifera are unicellular organisms that play an important role in marine organic matter cycles. Some species are able to isolate chloroplasts from their algal food source and incorporate them as kleptoplasts into their own metabolic pathways, a phenomenon known as kleptoplastidy. One species showing this ability is Elphidium excavatum, a common foraminifer in the Kiel Fjord, Germany. The Kiel Fjord is fed by several rivers and thus forms a habitat with strongly fluctuating salinity. Here, we tested the effects of the food source, salinity and light regime on the food uptake (via 15N and 13C algal uptake) in this kleptoplast-bearing foraminifer. In our study E. excavatum was cultured in the lab at three salinity levels (15, 20 and 25) and uptake of C and N from the food source Dunaliella tertiolecta (Chlorophyceae) and Leyanella arenaria (Bacillariophyceae) were measured over time (after 3, 5 and 7 d). The species was very well adapted to the current salinity of the sampling region, as both algal N and C uptake was highest at a salinity of 20. It seems that E. excavatum coped better with lower than with higher salinities. The amount of absorbed C from the green algae D. tertiolecta showed a tendency effect of salinity, peaking at a salinity of 20. Nitrogen uptake was also highest at a salinity of 20 and steadily increased with time. In contrast, C uptake from the diatom L. arenaria was highest at a salinity of 15 and decreased at higher salinities. We found no overall significant differences in C and N uptake from green algae vs. diatoms. Furthermore, the food uptake at a light–dark rhythm of 16:8 h was compared to continuous darkness. Darkness had a negative influence on algal C and N uptake, and this effect increased with incubation time. Starving experiments showed a stimulation of food uptake after 7 d. In summary, it can be concluded that E. excavatum copes well with changes of salinity to a lower level. For changes in light regime, we showed that light reduction caused a decrease of C and N uptake by E. excavatum.

2020 ◽  
Author(s):  
Michael Lintner ◽  
Bianca Lintner ◽  
Wolfgang Wanek ◽  
Nina Keul ◽  
Petra Heinz

Abstract. Foraminifera are unicellular organisms that play an important role in marine organic matter cycles. Some species are able to isolate chloroplasts from their algal food source and incorporate them as kleptoplasts into their own metabolic pathways, a phenomenon known as kleptoplastidy. One species showing this ability is Elphidium excavatum, a common foraminifer in the Kiel fjord, Germany. The Kiel fjord is fed by several rivers and thus forms a habitat with strongly fluctuating salinity. Here, we tested the effects of food source, salinity and light regime on the food uptake (via 15N and 13C algal uptake) in this kleptoplast-bearing foraminifer. In our study E. excavatum was cultured in the lab at three salinity levels (15, 20, 25 PSU) and uptake of C and N (food source: Dunaliella tertiolecta) were measured over time (after 3, 5, 7 days). The species was very well adapted to the current salinity of the sampling region, as both, algal N and C uptake was highest at 20 PSU. It seems that E. excavatum coped better with lower than with higher salinities. The amount of absorbed C from the green algae D. tertiolecta showed a marginal significant effect of salinity, peaking at 20 PSU. Nitrogen uptake was also highest at 20 PSU and steadily increased with time. In contrast, C uptake from the diatom L. arenaria was highest at 15 PSU and decreased at higher salinities. We found no overall significant differences in C and N uptake from green algae versus diatoms. Furthermore, the food uptake at a light/dark rhythm of 16:8 h was compared to continuous darkness. Darkness had a negative influence on algal C and N uptake, and this effect increased with incubation time. Starving experiments showed a stimulation of food uptake after 7 days. In summary, it can be concluded that E. excavatum copes well with changes of salinity to a lower level. For changes in light regime, we showed that light reduction caused a decrease of C and N uptake by E. excavatum.


2018 ◽  
Vol 15 (18) ◽  
pp. 5503-5517 ◽  
Author(s):  
P. Sadanandan Bhavya ◽  
Jang Han Lee ◽  
Ho Won Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. Carbon and nitrogen uptake rates by small phytoplankton (0.7–5 µm) in the Kara, Laptev, and East Siberian seas in the Arctic Ocean were quantified using in situ isotope labeling experiments; this research, which was novel and part of the NABOS (Nansen and Amundsen Basins Observational System) program, took place from 21 August to 22 September 2013. The depth-integrated carbon (C), nitrate (NO3-), and ammonium (NH4+) uptake rates by small phytoplankton ranged from 0.54 to 15.96 mg C m−2 h−1, 0.05 to 1.02 mg C m−2 h−1, and 0.11 to 3.73 mg N m−2 h−1, respectively. The contributions of small phytoplankton towards the total C, NO3-, and NH4+ varied from 25 % to 89 %, 31 % to 89 %, and 28 % to 91 %, respectively. The turnover times for NO3- and NH4+ by small phytoplankton found in the present study indicate the longer residence times (years) of the nutrients in the deeper waters, particularly for NO3-. Additionally, the relatively higher C and N uptake rates by small phytoplankton obtained in the present study from locations with less sea ice concentration indicate the possibility that small phytoplankton thrive under the retreat of sea ice as a result of warming conditions. The high contributions of small phytoplankton to the total C and N uptake rates suggest the capability of small autotrophs to withstand the adverse hydrographic conditions introduced by climate change.


2020 ◽  
Vol 17 (13) ◽  
pp. 3723-3732
Author(s):  
Michael Lintner ◽  
Bianca Biedrawa ◽  
Julia Wukovits ◽  
Wolfgang Wanek ◽  
Petra Heinz

Abstract. Benthic foraminifera are abundant marine protists which play an important role in the transfer of energy in the form of organic matter and nutrients to higher trophic levels. Due to their aquatic lifestyle, factors such as water temperature, salinity and pH are key drivers controlling biomass turnover through foraminifera. In this study the influence of salinity on the feeding activity of foraminifera was tested. Two species, Ammonia tepida and Haynesina germanica, were collected from a mudflat in northern Germany (Friedrichskoog) and cultured in the laboratory at 20 ∘C and a light–dark cycle of 16:08 h. A lyophilized algal powder from Dunaliella tertiolecta, which was isotopically enriched with 13C and 15N, was used as a food source. The feeding experiments were carried out at salinity levels of 11, 24 and 37 practical salinity units (PSU) and were terminated after 1, 5 and 14 d. The quantification of isotope incorporation was carried out by isotope ratio mass spectrometry. Ammonia tepida exhibited a 10-fold higher food uptake compared to H. germanica. Furthermore, in A. tepida the food uptake increased with increasing salinity but not in H. germanica. Over time (from 1–5 to 14 d) food C retention increased relative to food N in A. tepida while the opposite was observed for H. germanica. This shows that if the salinity in the German Wadden Sea increases, A. tepida is predicted to exhibit a higher C and N uptake and turnover than H. germanica, with accompanying changes in C and N cycling through the foraminiferal community. The results of this study show how complex and differently food C and N processing of foraminiferal species respond to time and to environmental conditions such as salinity.


2019 ◽  
Author(s):  
Michael Lintner ◽  
Bianca Biedrawa ◽  
Julia Wukovits ◽  
Wolfgang Wanek ◽  
Petra Heinz

Abstract. Benthic foraminifera are abundant marine protists which play an important role in the transfer of energy in the form of organic matter and nutrients to higher trophic levels. Due to their aquatic lifestyle, factors such as water temperature, salinity and pH are key drivers controlling biomass turnover through foraminifera. In this study the influence of salinity on the feeding activity of foraminifera was tested. Two species, Ammonia tepida and Haynesina germanica, were collected from a mudflat in northern Germany (Friedrichskoog) and cultured in the laboratory at 20 °C and a light/dark cycle of 16:8 h. A lyophilized algal powder from Dunaliella tertiolecta, which was isotopically enriched with 13C and 15N, was used as a food source. The feeding experiments were carried out at salinity levels of 11, 24 and 37 practical salinity units (PSU) and were terminated after 1, 5 and 14 days. The quantification of isotope incorporation was carried out by isotope ratio mass spectrometry. Ammonia tepida exhibited a 10-fold higher food uptake compared to H. germanica. Furthermore, in A. tepida the food uptake increased with increasing salinity but not in H. germanica. Over time (from 1–5 d to 14 d) food C retention increased relative to food N in A. tepida while the opposite was observed for H. germanica. This shows, that if the salinity in the German Wadden Sea increases, A. tepida is predicted to exhibit a higher C and N uptake and turnover than H. germanica, with accompanying changes in C and N cycling through the foraminiferal community. The results of this study show how complex and differently food C and N processing of foraminiferal species respond to time and to environmental conditions such as salinity.


2001 ◽  
Vol 49 (4) ◽  
pp. 369-378 ◽  
Author(s):  
S. N. SHARMA ◽  
R. PRASAD

Field experiments were conducted for two crop years at the Indian Agricultural Research Institute, New Delhi to study the effect of enriching wheat residue with legume residue on the productivity and nitrogen uptake of a rice-wheat cropping system and soil fertility. The incorporation of wheat residue had an adverse effect on the productivity of the rice-wheat cropping system. When it was incorporated along with Sesbania green manure, not only did its adverse effect disappear but the response to fertilizer N was also increased. There was no response to fertilizer N when Sesbania green manure was incorporated. When wheat residue was incorporated along with Sesbania green manuring, rice responded significantly to fertilizer N up to 120 kg N ha-1 in the first year and to 60 kgN ha-1 in the second year and at these levels of N, Sesbania + wheat residue gave 0.8 to 1.2 t ha-1 more grain, 0.6-1.0 t ha-1 more straw and 8-15 kg ha-1 more N uptake of rice resulting in 0.04-0.17% more organic C, 3-8 kg ha-1 more available P and 17-25 kg ha-1 more available K content in the soil than wheat residue alone at the same rates of N application. The respective increaseas caused by Sesbania green manure + wheat residue over Sesbania green manure alone were 0.3-0.5 t ha-1 in the grain and straw yield, 1-9 kg ha-1 in the N uptake of rice, 0.02-0.10% in organic C, 1-8 kg ha-1 in available P and 35- 70 kg ha-1 in available K content in the soil. These treatments also gave higher residual effects in succeeding wheat than wheat residue alone. The incorporation of residues of both wheat and Sesbania is thus recommended to eliminate the adverse effect of wheat residue and to increase the beneficial effects of Sesbania green manuring.


2013 ◽  
Vol 10 (1) ◽  
pp. 67-80 ◽  
Author(s):  
W. R. Hunter ◽  
A. Jamieson ◽  
V. A. I. Huvenne ◽  
U. Witte

Abstract. The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3–7 days) responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest in the western branch of the Whittard Canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0–1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal–bacterial interactions influence benthic C cycling in the Whittard Canyon, resulting in differential fates for marine and terrigenous OM.


2018 ◽  
Author(s):  
Bhavya P. Sadanandan ◽  
Jang Han Lee ◽  
Ho Won Lee ◽  
Jae Joong Kaang ◽  
Jae Hyung Lee ◽  
...  

Abstract. Carbon and nitrogen uptake rates by small phytoplankton (0.7–5 μm) in the Kara, Laptev, and East Siberian seas in the Arctic Ocean were quantified using in situ isotope labelling experiments for the first time as part of the NABOS (Nansen and Amundsen Basins Observational System) program during August 21 to September 22, 2013. The depth integrated C, NO3−, and NH4+ uptake rates by small phytoplankton showed a wide range from 0.54 to 15.96 mg C m−2 h−1, 0.05 to 1.02 and 0.11 to 3.73 mg N m−2 h−1, respectively. The contributions of small phytoplankton towards the total C, NO3−, and NH4+ was varied from 24 to 89 %, 32 to 89 %, and 28 to 89 %, respectively. The turnover times for NO3− and NH4+ by small phytoplankton during the present study point towards the longer residence times (years) of the nutrients in the deeper waters, particularly for NO3−. Relatively, higher C and N uptake rates by small phytoplankton obtained during the present study at locations with less sea ice concentrations points towards the possibility of small phytoplankton thrive under sea ice retreat under warming conditions. The high contributions of small phytoplankton towards the total carbon and nitrogen uptake rates suggest capability of small size autotrophs to withstand in the adverse hydrographic conditions introduced by climate change.


Sign in / Sign up

Export Citation Format

Share Document