small phytoplankton
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 235
Author(s):  
Jung-Woo Park ◽  
Yejin Kim ◽  
Kwan-Woo Kim ◽  
Amane Fujiwara ◽  
Hisatomo Waga ◽  
...  

The northern Bering and Chukchi seas are biologically productive regions but, recently, unprecedented environmental changes have been reported. For investigating the dominant phytoplankton communities and relative contribution of small phytoplankton (<2 µm) to the total primary production in the regions, field measurements mainly for high-performance liquid chromatography (HPLC) and size-specific primary productivity were conducted in the northern Bering and Chukchi seas during summer 2016 (ARA07B) and 2017 (OS040). Diatoms and phaeocystis were dominant phytoplankton communities in 2016 whereas diatoms and Prasinophytes (Type 2) were dominant in 2017 and diatoms were found as major contributors for the small phytoplankton groups. For size-specific primary production, small phytoplankton contributed 38.0% (SD = ±19.9%) in 2016 whereas 25.0% (SD = ±12.8%) in 2017 to the total primary productivity. The small phytoplankton contribution observed in 2016 is comparable to those reported previously in the Chukchi Sea whereas the contribution in 2017 mainly in the northern Bering Sea is considerably lower than those in other arctic regions. Different biochemical compositions were distinct between small and large phytoplankton in this study, which is consistent with previous results. Significantly higher carbon (C) and nitrogen (N) contents per unit of chlorophyll-a, whereas lower C:N ratios were characteristics in small phytoplankton in comparison to large phytoplankton. Given these results, we could conclude that small phytoplankton synthesize nitrogen-rich particulate organic carbon which could be easily regenerated.



2021 ◽  
Vol 9 (11) ◽  
pp. 1237
Author(s):  
Hyo-Keun Jang ◽  
Seok-Hyun Youn ◽  
Huitae Joo ◽  
Yejin Kim ◽  
Jae-Joong Kang ◽  
...  

Dramatic environmental changes have been recently reported in the Yellow Sea (YS), the South Sea of Korea (SS), and the East/Japan Sea (EJS), but little information on the regional primary productions is currently available. Using the 13C-15N tracer method, we measured primary productions in the YS, the SS, and the EJS for the first time in 2018 to understand the current status of marine ecosystems in the three distinct seas. The mean daily primary productions during the observation period ranged from 25.8 to 607.5 mg C m−2 d−1 in the YS, 68.5 to 487.3 mg C m−2 d−1 in the SS, and 106.4 to 490.5 mg C m−2 d−1 in the EJS, respectively. In comparison with previous studies, significantly lower (t-test, p < 0.05) spring and summer productions and consequently lower annual primary productions were observed in this study. Based on PCA analysis, we found that small-sized (pico- and nano-) phytoplankton had strongly negative effects on the primary productions. Their ecological roles should be further investigated in the YS, the SS, and the EJS under warming ocean conditions within small phytoplankton-dominated ecosystems.



2021 ◽  
Vol 8 ◽  
Author(s):  
Hao-Ran Zhang ◽  
Yuntao Wang ◽  
Peng Xiu ◽  
Yiquan Qi ◽  
Fei Chai

The subarctic Pacific is one of the major high-nitrate, low-chlorophyll (HNLC) regions where marine productivity is greatly limited by the supply of iron (Fe) in the region. There is a distinct seasonal difference in the chlorophyll concentrations of the east and west sides of the subarctic Pacific because of the differences in their driving mechanisms. In the western subarctic Pacific, two chlorophyll concentration peaks occur: the peak in spring and early summer is dominated by diatoms, while the peak in late summer and autumn is dominated by small phytoplankton. In the eastern subarctic Pacific, a single chlorophyll concentration peak occurs in late summer, while small phytoplankton dominate throughout the year. In this study, two one-dimensional (1D) physical–biological models with Fe cycles were applied to Ocean Station K2 (Stn. K2) in the western subarctic Pacific and Ocean Station Papa (Stn. Papa) in the eastern subarctic Pacific. These models were used to study the role of Fe limitation in regulating the seasonal differences in phytoplankton populations by reproducing the seasonal variability in ocean properties in each region. The results were reasonably comparable with observational data, i.e., cruise and Biogeochemical-Argo data, showing that the difference in bioavailable Fe (BFe) between Stn. K2 and Stn. Papa played a dominant role in controlling the respective seasonal variabilities of diatom and small phytoplankton growth. At Stn. Papa, there was less BFe, and the Fe limitation of diatom growth was two times as strong as that at Stn. K2; however, the difference in the Fe limitation of small phytoplankton growth between these two regions was relatively small. At Stn. K2, the decrease in BFe during summer reduced the growth rate of diatoms, which led to a rapid reduction in diatom biomass. Simultaneously, the decrease in BFe had little impact on small phytoplankton growth, which helped maintain the relatively high small phytoplankton biomass until autumn. The experiments that stimulated a further increase in atmospheric Fe deposition also showed that the responses of phytoplankton primary production in the eastern subarctic Pacific were stronger than those in the western subarctic Pacific but contributed little to primary production, as the Fe limitation of phytoplankton growth was replaced by macronutrient limitation.



2021 ◽  
Author(s):  
Takehiro Kazama ◽  
Kazuhide Hayakawa ◽  
Takamaru Nagata ◽  
Koichi Shimotori ◽  
Akio Imai ◽  
...  

Field observations of the population dynamics and measurements of photophysiology in Lake Biwa were conducted by size class (< vs. > 30 μm) from early summer to autumn to investigate the relationships between susceptibility to light stress and cell size. Also, a nutrient bioassay was conducted to clarify whether the growth rate and photosystem II (PSII) photochemistry of small and large phytoplankton are limited by nutrient availability. Large phytoplankton, which have lower intracellular Chl-a concentrations, had higher maximum PSII photochemical efficiency (Fv/Fm) but lower non-photochemical quenching (NPQNSV) than small phytoplankton under both dark and increased light conditions. The nutrient bioassay revealed that the PSII photochemistry of small phytoplankton was restricted by N and P deficiency at the pelagic site even at the end of the stratification period, while that of large phytoplankton was not. These results suggest that large phytoplankton have lower susceptibility to PSII photodamage than small phytoplankton due to lower intracellular Chl-a concentrations. The size dependency of susceptibility to PSII photoinactivation may play a key role in large algal blooms in oligotrophic water.



2021 ◽  
pp. 102639
Author(s):  
Yanpei Zhuang ◽  
Haiyan Jin ◽  
Yang Zhang ◽  
Hongliang Li ◽  
Tianzhen Zhang ◽  
...  


2021 ◽  
Author(s):  
Ewa Merz ◽  
Thea Kozakiewicz ◽  
Marta Reyes ◽  
Christian Ebi ◽  
Peter Isles ◽  
...  

AbstractWe present an approach for automated in-situ monitoring of phytoplankton and zooplankton communities based on a dual magnification dark-field imaging microscope/camera. We describe the Dual Scripps Plankton Camera (DSPC) system and associated image processing, and assess its capabilities in detecting and characterizing plankton species of different size and taxonomic categories, and in measuring their abundances in both laboratory and field applications. In the laboratory, body size and abundance estimates by the DSPC significantly and robustly scale with the same measurements derived by traditional microscopy. In the field, a DSPC installed permanently at 3 m depth in Lake Greifensee (Switzerland), delivered images of plankton individuals, colonies, and heterospecific aggregates without disrupting natural arrangements of interacting organisms, their microenvironment or their behavior at hourly timescales. The DSPC was able to track the dynamics of taxa in the size range between ∼10 μm to ∼ 1 cm, covering virtually all the components of the planktonic food web (including parasites and potentially toxic cyanobacteria). Comparing data from the field-deployed DSPC to traditional sampling and microscopy revealed a general overall agreement in estimates of plankton diversity and abundances, despite imaging limitations in detecting small phytoplankton species and rare and large zooplankton taxa (e.g. carnivorous zooplankton). The most significant disagreements between traditional methods and the DSPC resided in the measurements of community properties of zooplankton, organisms that are heterogeneously distributed spatially and temporally, and whose demography appeared to be better captured by automated imaging. Time series collected by the DSPC depicted ecological succession patterns, algal bloom dynamics and circadian fluctuations with a temporal frequency and morphological resolution that would have been impossible with traditional methods. We conclude that the DSPC approach is suitable for stable long-term deployments, and robust for both research and water quality monitoring. Access to high frequency, reproducible and real-time data of a large spectrum of the planktonic ecosystem might represent a breakthrough in both applied and fundamental plankton ecology.



2021 ◽  
Author(s):  
Justine Courboulès ◽  
Francesca Vidussi ◽  
Tanguy Soulié ◽  
Sébastien Mas ◽  
David Pecqueur ◽  
...  

AbstractTo investigate the responses of a natural microbial plankton community of coastal Mediterranean waters to warming, which are still poorly known, an in situ mesocosm experiment was carried out in Thau Lagoon during autumn 2018. Several microorganisms, including virio-, bacterio-, and phytoplankton < 10 µm in size, were monitored daily and analysed using flow cytometry for 19 consecutive days in six mesocosms. Three mesocosms (control) had the same natural water temperature as the lagoon, and the other three were warmed by + 3 °C in relation to the control temperature. The cytometric analyses revealed an unexpected community dominated by picophytoplanktonic cells, including Prochlorococcus-like and Picochlorum-like cells, which had not previously been found in Thau Lagoon. The experimental warming treatment increased the abundances of nanophytoplankton, cyanobacteria, bacteria and viruses during the experiment and triggered earlier blooms of cyanobacteria and picoeukaryotes. Only the abundance of Picochlorum-like cells was significantly reduced under warmer conditions. The growth and grazing rates of phytoplankton and bacterioplankton estimated on days 2 and 8 showed that warming enhanced the growth rates of most phytoplankton groups, while it reduced those of bacteria. Surprisingly, warming decreased grazing on phytoplankton and bacteria at the beginning of the experiment, while during the middle of the experiment it decreased the grazing on prokaryote only but increased it for eukaryotes. These results reveal that warming affected the Thau Lagoon plankton community from viruses to nanophytoplankton in fall, inducing changes in both dynamics and metabolic rates.



2021 ◽  
Author(s):  
Solène Irion ◽  
Urania Christaki ◽  
Hugo Berthelot ◽  
Stéphane L’Helguen ◽  
Ludwig Jardillier

AbstractPhytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d−1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d−1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41–70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.



2020 ◽  
Vol 11 ◽  
Author(s):  
Jae Joong Kang ◽  
Hyo Keun Jang ◽  
Jae-Hyun Lim ◽  
Dabin Lee ◽  
Jae Hyung Lee ◽  
...  

The current phytoplankton community structure is expected to change, with small phytoplankton becoming dominant under ongoing warming conditions. To understand and evaluate the ecological roles of small phytoplankton in terms of food quantity and quality, the carbon uptake rates and intracellular biochemical compositions (i.e., carbohydrates, CHO; proteins, PRT; and lipids, LIP) of phytoplankton of different sizes were analyzed and compared in two different regions of the western East/Japan Sea (EJS): the Ulleung Basin (UB) and northwestern East/Japan Sea (NES). The average carbon uptake rate by the whole phytoplankton community in the UB (79.0 ± 12.2 mg C m–2 h–1) was approximately two times higher than that in the NES (40.7 ± 2.2 mg C m–2 h–1), although the average chlorophyll a (chl a) concentration was similar between the UB (31.0 ± 8.4 mg chl a m–2) and NES (28.4 ± 7.9 mg chl a m–2). The main reasons for the large difference in the carbon uptake rates are believed to be water temperature, which affects metabolic activity and growth rate, and the difference in euphotic depths. The contributions of small phytoplankton to the total carbon uptake rate were not significantly different between the regions studied. However, the rate of decrease in the total carbon uptake with increasing contributions from small phytoplankton was substantially higher in the UB than in the NES. This result suggests that compared to other regions in the EJS, the primary production in the UB could decrease rapidly under ongoing climate change. The calorific contents calculated based on biochemical compositions were similar between the small (1.01 ± 0.33 Kcal m–3) and large (1.14 ± 0.36 Kcal m–3) phytoplankton in the UB, whereas the biochemical contents were higher in the large phytoplankton (1.88 ± 0.54 Kcal m–3) than in the small phytoplankton (1.06 ± 0.18 Kcal m–3) in the NES. The calorific values per unit of chl a were higher for the large phytoplankton than for the small phytoplankton in both regions, which suggests that large phytoplankton could provide a more energy efficient food source to organisms in higher trophic levels in the western EJS.



2020 ◽  
Vol 8 (11) ◽  
pp. 854
Author(s):  
Panthalil S. Bhavya ◽  
Jae Joong Kang ◽  
Hyo Keun Jang ◽  
HuiTae Joo ◽  
Jae Hyung Lee ◽  
...  

As a part of Korean-Russian joint expeditions in the East/Japan Sea during 2012 and 2015, a set of total and small (<2 μm) phytoplankton NO3− and NH4+ uptake rate estimations were carried out. The study aimed to assess the spatio-temporal variations in dissolved inorganic nitrogen (DIN) assimilation by the total and small phytoplankton. The results show that the total NO3− uptake rates during 2012 varied between 0.001 and 0.150 μmol NL−1h−1 (mean ± SD = 0.034 ± 0.033) and that the total NH4+ uptake rates ranged between 0.002 and 0.707 μmol NL−1h−1 (mean ± SD = 0.200 ± 0.158). The total uptake rates during 2015 were ranged from 0.003 to 0.530 (mean ± S.D. = 0.117 ± 0.120 μmol NL−1h−1) for NO3− and from 0.008 to 1.17 (mean ± S.D. = 0.199 ± 0.266 NL−1h−1) for NH4+. The small phytoplankton NO3− and NH4+ uptake rates during 2015 ranged between 0.001 and 0.164 (mean ± S.D. = 0.033 ± 0.036) μmol NL−1h−1 and 0.010–0.304 (mean ± S.D. = 0.101 ± 0.073) μmol NL−1h−1, respectively. Small phytoplankton’s contribution to the total depth-integrated NO3− and NH4+ uptake rates ranged from 10.24 to 59.36% and from 30.21 to 68.55%, respectively. The significant negative relationship observed between the depth-integrated total NO3− and NH4+ uptake rates and small phytoplankton contributions indicates a possible decline in the DIN assimilation rates under small phytoplankton dominance. The results from the present study highlight the possibility of a reduction in the total DIN assimilation process in the East/Japan Sea when small phytoplankton dominate under strong thermal stratification due to sea surface warming. The present study’s findings agree with the model projections, which suggested a decline in primary production in the global warming scenario.



Sign in / Sign up

Export Citation Format

Share Document