scholarly journals Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model

2021 ◽  
Vol 18 (13) ◽  
pp. 4005-4020
Author(s):  
Wu Ma ◽  
Lu Zhai ◽  
Alexandria Pivovaroff ◽  
Jacquelyn Shuman ◽  
Polly Buotte ◽  
...  

Abstract. Live fuel moisture content (LFMC) plays a critical role in wildfire dynamics, but little is known about responses of LFMC to multivariate climate change, e.g., warming temperature, CO2 fertilization, and altered precipitation patterns, leading to a limited prediction ability of future wildfire risks. Here, we use a hydrodynamic demographic vegetation model to estimate LFMC dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. We parameterize the model based on observed shrub allometry and hydraulic traits and evaluate the model's accuracy through comparisons between observed and simulated LFMC of three plant functional types (PFTs) under current climate conditions. Moreover, we estimate the number of days per year of LFMC below 79 % (which is a critical threshold for wildfire danger rating of southern California chaparral shrubs) from 1960 to 2099 for each PFT and compare the number of days below the threshold for medium and high greenhouse gas emission scenarios (RCP4.5 and 8.5). We find that climate change could lead to more days per year (5.2 %–14.8 % increase) with LFMC below 79 % between the historical (1960–1999) and future (2080–2099) periods, implying an increase in wildfire danger for chaparral shrubs in southern California. Under the high greenhouse gas emission scenario during the dry season, we find that the future LFMC reductions mainly result from a warming temperature, which leads to 9.1 %–18.6 % reduction in LFMC. Lower precipitation in the spring leads to a 6.3 %–8.1 % reduction in LFMC. The combined impacts of warming and precipitation change on fire season length are equal to the additive impacts of warming and precipitation change individually. Our results show that the CO2 fertilization will mitigate fire risk by causing a 3.5 %–4.8 % increase in LFMC. Our results suggest that multivariate climate change could cause a significant net reduction in LFMC and thus exacerbate future wildfire danger in chaparral shrub systems.

2020 ◽  
Author(s):  
Wu Ma ◽  
Lu Zhai ◽  
Alexandria Pivovaroff ◽  
Jacquelyn Shuman ◽  
Polly Buotte ◽  
...  

Abstract. Live fuel moisture content (LFMC) plays a critical role in wildfire dynamics, but little is known about responses of LFMC to multivariate climate change, e.g., warming temperature, CO2 fertilization and altered precipitation patterns, leading to a limited prediction ability of future wildfire risks. Here, we use a hydrodynamic vegetation model to estimate LFMC dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. We parameterize the model based on observed shrub allometry and hydraulic traits, and evaluate the model's accuracy through comparisons between simulated and observed LFMC of three plant functional types (PFTs) under current climate conditions. Moreover, we estimate the number of days per year of LFMC below 79 % (which is a critical threshold for wildfire danger rating) from 1950 to 2099 for each PFT, and compare the number of days below the threshold for medium and high greenhouse gas emission scenarios (RCP4.5 and 8.5). We find that climate change could lead to more days per year (5.5–15.2 % increase) with LFMC below 79 % from historical period 1950–1999 to future period 2075–2099, and therefore cause an increase in wildlife danger for chaparral shrubs in southern California. Under the high greenhouse gas emission scenario during the dry season, we find that the future LFMC reductions mainly result from a warming temperature, which leads to 9.5–19.1 % reduction in LFMC. Lower precipitation in the spring leads to a 6.6–8.3 % reduction in LFMC. The combined impacts of warming and precipitation change on fire season length are equal to the additive impacts of warming and precipitation change individually. Our results show that the CO2 fertilization will mitigate fire risk by causing a 3.7–5.1 % increase in LFMC. Our results suggest that multivariate climate change could cause a significant net reduction in LFMC and thus exacerbate future wildfire danger in chaparral shrub systems.


2013 ◽  
Vol 04 (03) ◽  
pp. 1350008 ◽  
Author(s):  
NIKOLINKA SHAKHRAMANYAN ◽  
UWE A. SCHNEIDER ◽  
BRUCE A. McCARL

Climate change may affect the use of pesticides and their associated environmental and human health impacts. This study employs and modifies a partial equilibrium model of the US agricultural sector to examine the effects of alternative regulations of the pesticide and greenhouse gas emission externality. Simulation results indicate that without pesticide externality regulations and low greenhouse gas emission mitigation strategy, climate change benefits from increased agricultural production in the US are more than offset by increased environmental costs. Although the combined regulation of pesticide and greenhouse gas emission externalities increases farmers' production costs, their net income effects are positive because of price adjustments and associated welfare shifts from consumers to producers. The results also show heterogeneous impacts on preferred pest management intensities across major crops. While pesticide externality regulations lead to substantial increases in total water use, climate policies induce the opposite effect.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun-Ming Zhang ◽  
Min-Li Song ◽  
Zhen-Jian Li ◽  
Xiang-Yong Peng ◽  
Shang Su ◽  
...  

Akebia quinata, also known as chocolate vine, is a creeping woody vine which is used as Chinese herbal medicine, and found widely distributed in East Asia. At present, its wild resources are being constantly destroyed. This study aims to provide a theoretical basis for the resource protection of this plant species by analyzing the possible changes in its geographic distribution pattern and its response to climate factors. It is the first time maximum entropy modeling (MaxEnt) and ArcGIS software have been used to predict the distribution of A. quinata in the past, the present, and the future (four greenhouse gas emission scenarios, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Through the prediction results, the impact of climate change on the distribution of A. quinata and the response of A. quinata to climate factors were analyzed. The results showed that the most significant climatic factor affecting the distribution pattern of A. quinata was the annual precipitation. At present, the suitable distribution regions of A. quinata are mainly in the temperate zone, and a few suitable distribution regions are in the tropical zone. The medium and high suitable regions are mainly located in East Asia, accounting for 51.1 and 81.7% of the worldwide medium and high suitable regions, respectively. The migration of the geometric center of the distribution regions of A. quinata in East Asia is mainly affected by the change of distribution regions in China, and the average migration rate of the geometric center in each climate scenario is positively correlated with the level of greenhouse gas emission scenario.


Author(s):  
Eziho Promise Ogele

The study examined the effects of climate change on the local economy occasioned by resource-based conflict in the Niger Delta region, Nigeria. The alteration in weather conditions in the Niger Delta region is associated with anthropogenic activities of the transnational oil companies for over five decades in the Niger Delta region, Nigeria. Despite the degree of oil exploration and exploitation, the Niger Delta region remained underdeveloped in social amenities. The inhabitants were deprived and alienated from the Petrodollar benefits. The launching of artisanal refining by the locals as a way of getting from Petro Dollar business became inevitable. These activities have increased greenhouse gas emission leading to the alteration in weather conditions in the Region Sadly, the Joint Military Task Force deployed to monitor and arrest culprit bombard and burn down the artisanal refining equipment unprofessionally, thereby increasing greenhouse gas emission into the atmosphere. Given the above, the Niger Delta inhabitants are experiencing alteration in weather condition leading to poor agricultural harvest.  The study adopted Frustration/Aggression theoretical as its framework. The study relied on primary through questionnaires and interview, while secondary sources data was through journals, books, newspapers, among others. The study unraveled that resource-based conflict occasioned deprivation and frustration increased greenhouse gas emission. The study recommends amongst others convening a climate change summit that will involve all the stakeholders in the oil activities in the Region.


Sign in / Sign up

Export Citation Format

Share Document