scholarly journals Review of “Decoupling of net community production and particulate organic carbon dynamics in near shore surface ocean waters” by Rosengard et al.

2019 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Sarah Z. Rosengard ◽  
Robert W. Izett ◽  
William J. Burt ◽  
Nina Schuback ◽  
Philippe D. Tortell

Abstract. We report results from two Lagrangian surveys off the coast of Oregon, using continuous ship-board sensors to estimate mixed layer net community production (NCP) from diel cycles in biological oxygen saturation (∆O2 / Ar) and optically-derived estimates of particulate organic carbon (POC) and phytoplankton carbon (Cph). The first drifter survey, conducted in a nearshore upwelling zone during the development of a microplankton bloom, exhibited significant differences in NCP derived from ∆O2 / Ar and POC diel cycles, suggesting the presence of large POC losses from the mixed layer. At this site, we utilized the discrepancy between NCPO2 / Ar and NCPPOC, along with additional constraints derived from mixed layer nutrient inventories and surface water excess nitrous oxide (N2O), to estimate particle export, vertical mixing fluxes and DOC production. We estimate that export, vertical mixing and DOC production account for 13–45 %, 24–38 % and 25–49 % of the daily NCP discrepancy, respectively. In contrast, the second drifter survey occurred in more oligotrophic offshore waters, where NCP derived from ∆O2 / Ar and POC measurements were more closely coupled, suggesting a tighter relationship between production and community respiration. These results support the use of diel POC measurements to accurately estimate NCP in lower productivity waters with limited vertical carbon export. Although diel POC measurements may underestimate NCP in higher productivity waters, our results highlight the potential utility of coupled O2 and optical measurements to estimate the fate of POC in such regions.


2014 ◽  
Vol 11 (12) ◽  
pp. 3279-3297 ◽  
Author(s):  
C.-H. Chang ◽  
N. C. Johnson ◽  
N. Cassar

Abstract. Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of one to two weeks and with six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This nonparametric approach is based entirely on the observed statistical relationships between NCP and the predictors and, therefore, is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published, independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November–March NCP climatology reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the Atlantic, Indian, and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, the Patagonian Shelf, the Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air–sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 17.9 mmol C m−2 d−1, falls within the range of 8.3 to 24 mmol C m−2 d−1 from other model estimates. A broad agreement is found in the basin-wide NCP climatology among various models but with significant spatial variations, particularly in the Patagonian Shelf. Our approach provides a comprehensive view of the Southern Ocean NCP climatology and a potential opportunity to further investigate interannual and intraseasonal variability.


2016 ◽  
Vol 116 ◽  
pp. 49-76 ◽  
Author(s):  
William Z. Haskell ◽  
Maria G. Prokopenko ◽  
Douglas E. Hammond ◽  
Rachel H.R. Stanley ◽  
William M. Berelson ◽  
...  

2014 ◽  
Vol 50 (5) ◽  
pp. 4341-4356 ◽  
Author(s):  
J. D. Drummond ◽  
A. F. Aubeneau ◽  
A. I. Packman

2013 ◽  
Vol 10 (9) ◽  
pp. 14861-14885 ◽  
Author(s):  
K. Schmidt ◽  
C. L. De La Rocha ◽  
M. Gallinari ◽  
G. Cortese

Abstract. Correlation between particulate organic carbon (POC) and calcium carbonate sinking through the deep ocean has led to the idea that ballast provided by calcium carbonate is important for the export of POC from the surface ocean. While this idea is certainly to some extent true, it is worth considering in more nuance, for example, examining the different effects on the aggregation and sinking of POC of small, non-sinking calcite particles like coccoliths and large, rapidly sinking calcite like planktonic foraminiferan tests. We have done that here in a simple experiment carried out in roller tanks that allow particles to sink continuously without being impeded by container walls. Coccoliths were efficiently incorporated into aggregates that formed during the experiment, increasing their sinking speed compared to similarly sized aggregates lacking added calcite ballast. The foraminiferan tests, which sank as fast as 700 m d−1, became associated with only very minor amounts of POC. In addition, when they collided with other, larger, foraminferan-less aggregates, they fragmented them into two smaller, more slowly sinking aggregates. While these effects were certainly exaggerated within the confines of the roller tanks, they clearly demonstrate that calcium carbonate ballast is not just calcium carbonate ballast- different forms of calcium carbonate ballast have notably different effects on POC aggregation, sinking, and export.


2006 ◽  
Vol 3 (3) ◽  
pp. 803-836 ◽  
Author(s):  
M. Gehlen ◽  
L. Bopp ◽  
N. Emprin ◽  
O. Aumont ◽  
C. Heinze ◽  
...  

Abstract. This study focuses on an improved representation of the biological soft tissue pump in the global three-dimensional biogeochemical ocean model PISCES. We compare three parameterizations of particle dynamics: (1) the model standard version including two particle size classes, aggregation-disaggregation and prescribed sinking speed; (2) an aggregation-disaggregation model with a particle size spectrum and prognostic sinking speed; (3) a mineral ballast parameterization with no size classes, but prognostic sinking speed. In addition, the model includes a description of surface sediments and organic carbon early diagenesis. The integrated representation of material fluxes from the productive surface ocean down to the sediment-water interface allows taking advantage of surface ocean observations, sediment trap data and exchange fluxes at the sediment-water interface. The capability of the model to reproduce yearly averaged particulate organic carbon fluxes and benthic oxygen demand does at first order not dependent on the resolution of the particle size spectrum. Model results obtained with the standard version and with the one including a particle size spectrum and prognostic sinking speed are not significantly different. Both model versions overestimate particulate organic carbon between 1000 and 2000 m, while deep fluxes are of the correct order of magnitude. Predicted benthic oxygen fluxes correspond with respect to their large scale distribution and magnitude to data based estimates. Modeled particulate organic C fluxes across the mesopelagos are most sensitive to the intensity of zooplankton flux feeding. An increase of the intensity of flux feeding in the standard version results in lower mid- and deep-water particulate organic carbon fluxes, shifting model results to an underestimation of particulate organic carbon fluxes in the deep. The corresponding benthic oxygen fluxes are too low. The model version including the mineral ballast parameterization yields an improved fit between modeled and observed particulate organic carbon fluxes below 2000 m and down to the sediment-water interface. Our results suggest that aggregate formation alone might not be sufficient to drive an intense biological pump. The later is most likely driven by the combined effect of aggregate formation and mineral ballasting.


1998 ◽  
Vol 12 (3) ◽  
pp. 443-453 ◽  
Author(s):  
Dennis A. Hansell ◽  
Craig A. Carlson

Sign in / Sign up

Export Citation Format

Share Document