scholarly journals Supplementary material to "Effects of extraction conditions on the redox properties of soil organic matter (SOM) and its ability to stimulate microbial iron(III) mineral reduction by electron shuttling"

Author(s):  
Yuge Bai ◽  
Edisson Subdiaga ◽  
Stefan B. Haderlein ◽  
Heike Knicker ◽  
Andreas Kappler
2019 ◽  
Author(s):  
Yuge Bai ◽  
Edisson Subdiaga ◽  
Stefan B. Haderlein ◽  
Heike Knicker ◽  
Andreas Kappler

Abstract. Soil organic matter (SOM), including humic substances (HS), is redox-active, can be microbially reduced, and transfers electrons in an abiotic reaction to Fe(III) minerals thus serving as electron shuttle. The standard procedure to extract HS from soil and separate them into humic acids (HA) and fulvic acids (FA) involves alkaline and acidic solutions potentially leading to unwanted changes in SOM chemical and redox properties. To determine the effects of extraction conditions on the redox and electron shuttling properties of SOM extracts, we prepared HS and SOM extracts from a forest soil applying either a combination of 0.1 M NaOH and 6 M HCl, or water (pH 7). Both chemical extractions (NaOH / HCl) and water extractions were done in separate setups under either oxic or anoxic conditions. Furthermore, we applied the NaOH / HCl treatment to a subsample of the water-extracted-SOM. We found that soil extraction with NaOH lead to ca. 100 times more extracted C and the extracted HS had 2–3 times higher electron exchange capacities (EEC) than SOM extracted by water. For water-extracted SOM, anoxic extraction conditions lead to about 7 times more extracted C and 1.5 times higher EEC than under oxic extraction conditions. This difference was probably due to the occurrence of microbial reduction and dissolution of Fe(III) minerals in the soil during the water extraction at neutral pH and the concomitant release of Fe(III) mineral-bound organic matter. NaOH / HCl treatment of the water-extracted SOM lead to 2 times higher EEC values in the HA isolated from the SOM compared to the water-extracted SOM itself, suggesting the chemical treatment with NaOH and HCl caused changes of redox-active functional groups of the extracted organic compounds. Higher EEC of extracts in turn resulted in a higher stimulation of microbial Fe(III) mineral reduction by electron shuttling, i.e. faster initial Fe(III) reduction rates, and in most cases also in higher reduction extents. Our findings suggest that SOM extracted with water at neutral pH should be used to better reflect environmental SOM redox processes in lab experiments and that potential artefacts of the chemical extraction method and anoxic extraction condition need to be considered when evaluating and comparing abiotic and microbial SOM redox processes.


2009 ◽  
Vol 55 (5) ◽  
pp. 477-492 ◽  
Author(s):  
Olga Kalinina ◽  
Oleg Chertov ◽  
Marina Nadporozhskaya ◽  
Luise Giani

2006 ◽  
Vol 3 (2) ◽  
pp. 309-320 ◽  
Author(s):  
J. Leifeld ◽  
U. Franko ◽  
E. Schulz

Abstract. We used differential scanning calorimetry (DSC) to infer thermal properties of soil organic matter (SOM) in the static fertilization experiment in Bad Lauchstädt, Germany, which has been established in 1902. Four treatments (null N, change from null to manuring in 1978 NM, change from manuring to null in 1978 MN, and permanent manure and mineral fertilization since 1902 M) were sampled in 2004. Soil organic carbon contents were highest for M (2.4%), lowest for N (1.7%), and similar for MN and NM (2.2%). DSC thermograms were characterized by three peaks at around 354, 430, and 520°C, which were assigned to as thermally labile and stable SOM and combustion residues from lignite, respectively. DSC peak temperatures were relatively constant among treatments, but peak heights normalized to the organic C content of the soil were significantly different for labile and stable SOM. Labile C was higher for M>MN=NM=N, and stable C decreased in the order N=NM>MN=M, showing that agricultural depletion of SOM increases the share of thermally stable C. Lignite-derived C was not affected by management, suggesting a homogeneous deposition across treatments.


2006 ◽  
Vol 3 (3) ◽  
pp. 371-374 ◽  
Author(s):  
J. Leifeld ◽  
U. Franko ◽  
E. Schulz

Abstract. We used differential scanning calorimetry (DSC) to infer thermal properties of soil organic matter (SOM) in the static fertilization experiment in Bad Lauchstädt, Germany, which has been established in 1902. Four treatments (null N, change from null to manuring in 1978 NM, change from manuring to null in 1978 MN, and permanent manure and mineral fertilization since 1902 M) were sampled in 2004. Soil organic carbon contents were highest for M (2.4%), lowest for N (1.7%), and similar for MN and NM (2.2%). Three heat flow peaks at around 354°C, 430°C, and 520°C, which were assigned to as thermally labile and stable SOM and combustion residues from lignite, respectively, characterized DSC thermograms. DSC peak temperatures were relatively constant among treatments, but peak heights normalized to the organic C content of the soil were significantly different for labile and stable SOM. Labile C was higher for M>MN=NM=N, and stable C decreased in the order N=NM>MN=M, showing that agricultural depletion of SOM increases the share of thermally stable C. Lignite-derived C was not affected by management, suggesting a homogeneous deposition across treatments.


Sign in / Sign up

Export Citation Format

Share Document