chemical extraction
Recently Published Documents


TOTAL DOCUMENTS

573
(FIVE YEARS 146)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Vol 2 ◽  
Author(s):  
William B. Brinckerhoff ◽  
Peter A. Willis ◽  
Antonio J. Ricco ◽  
Desmond A. Kaplan ◽  
Ryan M. Danell ◽  
...  

The Europan Molecular Indicators of Life Investigation (EMILI) is an instrument concept being developed for the Europa Lander mission currently under study. EMILI will meet and exceed the scientific and technical/resource requirements of the organic composition analyzer identified as a core instrument on the Lander. EMILI tightly couples two complementary analytical techniques, based on 1) liquid extraction and processing with capillary electrophoresis and 2) thermal and chemical extraction with gas chromatography, to robustly detect, structurally characterize, and quantify the broadest range of organics and other Europan chemicals over widely-varying concentrations. Dual processing and analysis paths enable EMILI to perform a thorough characterization of potential molecular biosignatures and contextual compounds in collected surface samples. Here we present a summary of the requirements, design, and development status of EMILI with projected scientific opportunities on the Europa Lander as well as on other potential life detection missions seeking potential molecular biosignatures in situ.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 142
Author(s):  
Jiacong Sun ◽  
Yating Luo ◽  
Jien Ye ◽  
Chunhui Li ◽  
Jiyan Shi

Hexavalent chromium (Cr(VI)) waste produced by chrome plating activities pollutes the surrounding environment and harms human health. However, information about the chromium (Cr) pollution characteristics of actual electroplating sites is still lacking. In this study, the concentration, leachability and speciation of Cr in soils from a typical chrome plating site were analyzed. Our results showed that this site was severely contaminated by Cr (7.2 to 7735.2 mg/kg) and Cr(VI) reached the mean concentration of 138.7 mg/kg. The spatial distribution of Cr(VI) was related to the plating processes. Chrome plating and sewage treatment areas could be considered as the hot spots of contaminated sites. The vertical distribution of Cr(VI) was mainly affected by soil properties, where the loam layer retained and reduced a large amount of Cr(VI) due to its high content of iron minerals and finer particle fractions. Additionally, the chemical extraction results showed that Cr was mainly in non-residual fractions and the existence of Cr(VI) led to a high leaching toxicity based on the toxicity characteristic leaching procedure (TCLP) results. Moreover, X-ray photoelectron spectroscopy (XPS) results revealed the speciation of Cr in the long-term contaminated soils. A large amount of Cr(VI) was reduced into Cr(III) and mainly existed as Cr(OH)3 and Cr2O3. Furthermore, Cr(VI) tended to precipitate as CaCrO4 and persisted in soils. Therefore, it is necessary to find appropriate strategies to remediate these contaminated soils. Overall, these findings strengthen our understanding of Cr(VI) behaviors and lay a foundation for the future pollution investigation, ecological remediation and risk assessment of sites contaminated by electroplating.


2022 ◽  
Vol 8 ◽  
Author(s):  
Raul Leal Faria Luiz ◽  
Rodrigo Caldas Menezes ◽  
Sandro Antonio Pereira ◽  
Raquel de Vasconcellos Carvalhaes de Oliveira ◽  
Manoel Marques Evangelista Oliveira

Sporotrichosis is a chronic, cosmopolitan granulomatous mycosis that affects humans and animals. The infection is caused by the dimorphic fungi Sporothrix sp. The aims of the present study were to evaluate, standardize and validate a nested PCR technique using two DNA purification kits for the extraction of DNA from formalin fixed and paraffin-embedded tissues (FFPE) for Sporothrix sp. detection. FFPE mycological culture pellet samples of different Sporothrix species (S. chilensis, S. mexicana, S. pallida, S. globosa, S. brasiliensis and S. schenckii) were used as positive controls and clinical FFPE tissue samples of animals positive for Cryptococcus sp., Leishmania infantum and Histoplasma sp. were used as negative controls. Ten clinical FFPE skin samples from cats with sporotrichosis were used to validate the nested PCR. These samples were cut into two distinct paraffin sectioning protocols (5 and 16 μm thick). The paraffin sections were subjected to two different DNA extraction kits (chemical and thermal extractions). A nested PCR was performed on the extracted DNA to identify the genus Sporothrix. The chemical extraction protocol with the 5 μm thick paraffin section was more effective in extracting DNA from Sporothrix sp. from FFPE samples and the nested PCR technique showed the highest sensitivities (100% in the positive controls and of 50% in the skin samples of cats) and specificity (100%). Therefore, the nested PCR using this protocol has great potential to be applied in Sporothrix sp. diagnosis in FFPE samples of cats.


2021 ◽  
Vol 21 (2) ◽  
pp. 170
Author(s):  
Thet Mya Mya Sein ◽  
Ei Mon Aung

In this paper, Erianthus plant, a grass type of lignocellulosic biomass, is presented as an alternative source for the production of amorphous silica. Thermal treatment (combustion) of Erianthus plant under a controlled temperature of 600–900°C produces Erianthus Ash (EA). Then, silica powder was extracted from EA by the chemical extraction method. In this work, the effect of treatment temperature on the preparation of EA and extracted silica is studied. The EA samples and extracted silica are noted as EA600 – EA900 and Si600 – Si900 respectively with respect to the treatment temperature. To evaluate the effect of the concentration of NaOH solution on the purity of silica, NaOH solution (2–3 N) is verified in this work. The results revealed that the pure amorphous silica can be extracted using a 2.5 N NaOH solution from EA800. The percentage of amorphous silica with a purity of about 99% was confirmed by X-Ray Fluorescence (XRF).


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Xiaobing Wang ◽  
Lingmei Zhou ◽  
Shuquan Zhu ◽  
Hao Zheng ◽  
Yue Ma ◽  
...  

Chromium (Cr) and the emission of its compounds into the environment have caused long-term environmental contamination. In this study, the modes of occurrence of Cr in low-rank coal and their thermal stability in pyrolysis were investigated by sequential chemical extraction (SCE), single-component samples (SCS) pyrolysis, and thermochemical equilibrium simulation. The results showed that organic matter, aluminosilicate, and carbonate were the dominant modes of occurrence of Cr in low-rank coal. The modes of occurrence and chlorine (Cl) content affected the volatilization of Cr in coal. The characteristic release temperature range of Cr bounded to aluminosilicate was >600 °C and 400–600 °C for Cr bounded to a disulfide. Cr bounded to organic matter almost released completely before 600 °C. Cl enhanced the volatility of Cr and reduced its release temperature in Cr bounded to aluminosilicate. The simulation showed the content of gas products was very low, mainly chlorides. While the content of solid products, sulfides, and oxides, was much higher than gas products, showing their high thermal stability. The sulfides and oxides in chars were closely related to the carbonate and aluminosilicate bound form of Cr. The results of the equilibrium simulation were consistent with the experimental results.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7603
Author(s):  
Kellie Morgan ◽  
Colin Conway ◽  
Sheila Faherty ◽  
Cormac Quigley

Chitin, the second most abundant biopolymer on earth, is utilised in a wide range of applications including wastewater treatment, drug delivery, wound healing, tissue engineering, and stem cell technology among others. This review compares the most prevalent strategies for the extraction of chitin from crustacean sources including chemical methods that involve the use of harsh solvents and emerging methods using deep eutectic solvents (DES). In recent years, a significant amount of research has been carried out to identify and develop environmentally friendly processes which might facilitate the replacement of problematic chemicals utilised in conventional chemical extraction strategies with DES. This article provides an overview of different experimental parameters used in the DES-mediated extraction of chitin while also comparing the purity and yields of associated extracts with conventional methods. As part of this review, we compare the relative proportions of chitin and extraneous materials in different marine crustaceans. We show the importance of the species of crustacean shell in relation to chitin purity and discuss the significance of varying process parameters associated with different extraction strategies. The review also describes some recent applications associated with chitin. Following on from this review, we suggest recommendations for further investigation into chitin extraction, especially for experimental research pertaining to the enhancement of the “environmentally friendly” nature of the process. It is hoped that this article will provide researchers with a platform to better understand the benefits and limitations of DES-mediated extractions thereby further promoting knowledge in this area.


Author(s):  
Dr. Sumanta Bhattacharya

Abstract: The crux of the new trend lies in sustainability and so follows the recyclable products. Polyester is of immense importance as a fibre when it comes to textile and garment, but the type used (Virgin PET) is not an eco-friendly one. Polyester filament extracted from the recycled PET bottles can cater to the unmet need of an eco-friendly substitute to the virgin polyester. A comparative study has been made to analyse whether recycled PET can perform the functionality of virgin PET. The physical properties of both stand out to be the same, signalling the use of recycled PET filament. Recycled PET filament finds it limitation in non-uniform dyeing but the same can be solved through chemical extraction. Keywords: Virgin PET, Recycled PET, Instron test, Boiling water shrinkage test, sustainable, market potential.


2021 ◽  
Vol 9 (12) ◽  
pp. 2417
Author(s):  
Mevin Kiprotich Lagat ◽  
Samuel Were ◽  
Francis Ndwigah ◽  
Violah Jepkogei Kemboi ◽  
Carolyne Kipkoech ◽  
...  

Globally, the broad-spectrum antimicrobial activity of chitin and chitosan has been widely documented. However, very little research attention has focused on chitin and chitosan extracted from black soldier fly pupal exuviae, which are abundantly present as byproducts from insect-farming enterprises. This study presents the first comparative analysis of chemical and biological extraction of chitin and chitosan from BSF pupal exuviae. The antibacterial activity of chitosan was also evaluated. For chemical extraction, demineralization and deproteinization were carried out using 1 M hydrochloric acid at 100 °C for 2 h and 1 M NaOH for 4 h at 100 °C, respectively. Biological chitin extraction was carried out by protease-producing bacteria and lactic-acid-producing bacteria for protein and mineral removal, respectively. The extracted chitin was converted to chitosan via deacetylation using 40% NaOH for 8 h at 100 °C. Chitin characterization was done using FTIR spectroscopy, while the antimicrobial properties were determined using the disc diffusion method. Chemical and biological extraction gave a chitin yield of 10.18% and 11.85%, respectively. A maximum chitosan yield of 6.58% was achieved via chemical treatment. From the FTIR results, biological and chemical chitin showed characteristic chitin peaks at 1650 and 1550 cm−1—wavenumbers corresponding to amide I stretching and amide II bending, respectively. There was significant growth inhibition for Escherichia coli, Bacillus subtilis,Pseudomonas aeruginosa,Staphylococcus aureus, and Candida albicans when subjected to 2.5 and 5% concentrations of chitosan. Our findings demonstrate that chitosan from BSF pupal exuviae could be a promising and novel therapeutic agent for drug development against resistant strains of bacteria.


Sign in / Sign up

Export Citation Format

Share Document