microbial reduction
Recently Published Documents


TOTAL DOCUMENTS

740
(FIVE YEARS 126)

H-INDEX

62
(FIVE YEARS 7)

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Stefano Serra ◽  
Stefano Marzorati ◽  
Mattia Valentino

In this work, we describe two different biotechnological processes that provide the natural flavour dihydrocoumarin in preparative scale. Both the presented approaches are based on the enzyme-mediated reduction of natural coumarin. The first one is a whole-cell process exploiting the reductive activity of the yeast Kluyveromyces marxianus, a Generally Recognized As Safe (GRAS) microorganism that possesses high resistance to the substrate toxicity. Differently, the second is based on the reduction of natural coumarin by nicotinamide adenine dinucleotide phosphate (NADPH) and using the Old Yellow Enzyme reductase OYE2 as catalyst. NADPH is used in catalytic amount since the co-factor regeneration is warranted employing an enzymatic system based on glucose oxidation, in turn catalysed by a further enzyme, namely glucose dehydrogenase (GDH). Both processes compare favourably over the previously reported industrial method as they work with higher coumarin concentration (up to 3 g/L for the enzymatic process) yet allowing the complete conversion of the substrate. Furthermore, the two approaches have significant differences. The microbial reduction is experimentally simple but the isolated dihydrocoumarin yield does not exceed 60%. On the contrary, the enzymatic approach requires the use of two specially prepared recombinant enzymes, however, it is more efficient, affording the product in 90% of isolated yield.


2021 ◽  
Author(s):  
Neha Sharma ◽  
Elaine Flynn ◽  
Jeffrey Catalano ◽  
Daniel Giammar

Denitrification is microbially-mediated through enzymes containing metal cofactors. Laboratory studies of pure cultures have highlighted that the availability of Cu, required for the multicopper enzyme nitrous oxide reductase, can limit N2O reduction. However, in natural aquatic systems, such as wetlands and hyporheic zones in stream beds, the role of Cu in controlling denitrification remains incompletely understood. In this study, we collected soils and sediments from three natural environments -- riparian wetlands, marsh wetlands, and a stream -- to investigate their nitrogen species transformation activity at background Cu levels and different supplemented Cu loadings. All of the systems displayed low solid-phase associated Cu (40 - 280 nmol g-1), which made them appropriate sites for evaluating the effect of limited Cu availability on denitrification. In laboratory incubation experiments, high concentrations of N2O accumulated in all microcosms lacking Cu amendment except for one stream sediment sample. With Cu added to provide dissolved concentrations at trace levels (10-300 nM), reduction of N2O to N2 in the wetland soils and stream sediments was enhanced. A kinetic model could account for the trends in nitrogen species by combining the reactions for microbial reduction of NO3- to NO2-/N2O/N2 and abiotic reduction of NO2- to N2. The model revealed that the rate of N2O to N2 conversion increased significantly in the presence of Cu. For riparian wetland soils and stream sediments, the kinetic model also suggested that overall denitrification is driven by abiotic reduction of NO2- in the presence of inorganic electron donors. This study demonstrated that natural aquatic systems containing Cu at concentrations less than or equal to crustal abundances may display incomplete reduction of N2O to N2 that would cause N2O accumulation and release to the atmosphere.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1869
Author(s):  
Camila Ramão Contessa ◽  
Nathieli Bastos de Souza ◽  
Guilherme Battú Gonçalo ◽  
Catarina Motta de Moura ◽  
Gabriela Silveira da Rosa ◽  
...  

In the search for new biodegradable materials and greater microbiological safety and stability of perishable food products, this study aimed to develop a bioplastic antibacterial film incorporating bacteriocin for application in commercial curd cheese and monitoring of microbiological stability. Films with good handling characteristics as well as physical, barrier, and mechanical properties were obtained. Regarding the antibacterial activity, the microbial reduction was demonstrated in a food matrix, obtaining a reduction of 3 logarithmic cycles for the group of coagulase positive staphylococci and from 1100 to <3.00 MPN/g in the analysis of thermotolerant coliforms. Therefore, the film presented food barrier characteristics with the external environment and adequate migration of the antibacterial compound to the product, contributing to the reduction of contamination of a food with high initial microbial load.


PalZ ◽  
2021 ◽  
Author(s):  
Carolin L. Dreher ◽  
Manuel Schad ◽  
Leslie J. Robbins ◽  
Kurt O. Konhauser ◽  
Andreas Kappler ◽  
...  

AbstractBanded Iron Formations (BIFs) are marine chemical sediments consisting of alternating iron (Fe)-rich and silica (Si)-rich bands which were deposited throughout much of the Precambrian era. BIFs represent important proxies for the geochemical composition of Precambrian seawater and provide evidence for early microbial life. Iron present in BIFs was likely precipitated in the form of Fe3+ (Fe(III)) minerals, such as ferrihydrite (Fe(OH)3), either through the metabolic activity of anoxygenic photoautotrophic Fe2+ (Fe(II))-oxidizing bacteria (photoferrotrophs), by microaerophilic bacteria, or by the oxidation of dissolved Fe(II) by O2 produced by early cyanobacteria. However, in addition to oxidized Fe-bearing minerals such as hematite (FeIII2O3), (partially) reduced minerals such as magnetite (FeIIFeIII2O4) and siderite (FeIICO3) are found in BIFs as well. The presence of reduced Fe in BIFs has been suggested to reflect the reduction of primary Fe(III) minerals by dissimilatory Fe(III)-reducing bacteria, or by metamorphic (high pressure and temperature) reactions occurring in presence of buried organic matter. Here, we present the current understanding of the role of Fe-metabolizing bacteria in the deposition of BIFs, as well as competing hypotheses that favor an abiotic model for BIF deposition. We also discuss the potential abiotic and microbial reduction of Fe(III) in BIFs after deposition. Further, we review the availability of essential nutrients (e.g. P and Ni) and their implications on early Earth biogeochemistry. Overall, the combined results of various ancient seawater analogue experiments aimed at assessing microbial iron cycling pathways, coupled with the analysis of the BIF rock record, point towards a strong biotic influence during BIF genesis.


2021 ◽  
pp. 108201322110496
Author(s):  
Joshua R. Cassar ◽  
Edward W. Mills ◽  
Ali Demirci

Contact with continuous belt conveyors during processing results in opportunities for pathogenic and spoilage microorganisms to contaminate meat products. The objective of this project is to investigate the germicidal response on the surface of food-grade conveyor belt materials treated with pulsed ultraviolet (PUV) light. Four conveyor belt types including: a stainless-steel chain-link belt, a polytetrafluoroethylene (PTFE)-coated fabric belt, a solid pliable polymer belt, and a rigid-linked polymer belt, were evaluated for the inactivation of Escherichia coli K12-NSR strain and lactic acid bacteria (LAB). Prior to bacterial inoculation, samples were classified as soiled or unsoiled, based on the presence or absence of pork intramuscular fluid on the surfaces of the conveyor samples. Using a variable speed conveyor, equipped with a Xenon flashlamp positioned 10-cm above the surface, each belt sample was exposed to PUV light at three fixed conveyor speeds: 3.05, 15.24, and 30.48 cm/sec, resulting in a total energy exposure of 3.31, 0.66 and 0.33 J/cm2, respectively. For samples inoculated with E. coli K12-NSR, the surface condition (soiled or unsoiled) by treatment interaction was significant for microbial inactivation on the surface of the rigid polymer linked belt (P < 0.05). For samples inoculated with the LAB cocktail, the same interaction was significant for the PTFE-coated fabric belt and the solid pliable polymer belt (P < 0.05). Microbial reduction ranged from 0.74 to 5.04 log10 CFU/cm2 for E. coli K12-NSR and 0.63 to 4.61 Log10 CFU/cm2 for LAB for the evaluated treatment parameters. The results of this project demonstrate that PUV light is an effective means of decontamination for conveyor belts during food processing.


2021 ◽  
Vol 7 (2) ◽  
pp. 239-242
Author(s):  
Ben Sicks ◽  
Christina Stock ◽  
Sarah Peter ◽  
Tobias Meurle ◽  
Katharina Hoenes ◽  
...  

Abstract Artificial respiration is saving lives especially in the COVID-19 pandemic, but it also carries the risk to cause ventilator-associated pneumonia (VAP). VAP is one of the most common and severe nosocomial infections, often leading to death and adding a major economic burden to the healthcare system. To prevent a proliferation of microbial pathogens that cause VAP, an endotracheal tube (ETT) equipped with blue LEDs (LED-ETT) was developed. This blue wavelength exhibits antimicrobial properties but may also harm human tracheal cells at higher irradiances. Therefore, the aim of this study was to find the minimal required irradiance for microbial reduction of 1 log level in 24 h by applying LED-ETTs. A LED-ETT with 48 blue LEDs (450 nm) was fixed in a glass tube, which served as a trachea model. The investigation was carried out with irradiations of 4.2, 6.6 and 13.4 mW/cm² at 37 °C for 24 h. The experiments were performed with Acinetobacter kookii as a surrogate of Acinetobacter baumannii, which is classified as critical by the WHO. Samples of A. kookii suspensions were taken every 4 h during irradiation from the trachea model. Bacteria concentrations were quantified by determining colony forming units (CFU)/ml. A homogeneous irradiance of only 4.2 mW/cm² generated by the blue LEDs, at a LED forward current of 3.125 mA, is sufficient to achieve a 1 log reduction of A. kookii within 24 h. The total irradiation dose within this period was 360 J/cm2. Human cells survive this dose without cellular damage. Previous studies revealed that the pathogen A. baumannii is even more sensitive to blue light than A. kookii. Therefore, blue LED-ETTs are expected to reduce A. baumannii without harming human tracheal cells.


LWT ◽  
2021 ◽  
pp. 112696
Author(s):  
Prachi Pahariya ◽  
Derek J. Fisher ◽  
Ruplal Choudhary

2021 ◽  
Vol 12 ◽  
Author(s):  
Nannan Chen ◽  
Pingwei Qin ◽  
Yu Liu ◽  
Ying Yang ◽  
Hairuo Wen ◽  
...  

With the development of large-scale and intensive poultry farming, environmental disinfection has become particularly important, and the effectiveness of disinfection depends upon the performance of the disinfectants. Quaternate ammonium salt is a group of positively charged polyatomic ions with both antibacterial and antiviral activities. In order to prepare an ideal disinfectant for poultry farms, we combined a quaternate ammonium salt N-dodecyl-2-(piridin-1-ium)acetamide chloride with two other disinfectants (chlorhexidine acetate and glutaraldehyde), respectively. The antimicrobial activity, mutagenicity, and safety of the compound disinfectants were assessed by the European Standard methods using ATCC strains and clinical isolates. The results showed that both compound disinfectants meet the requirements of microbial reduction, and their effectiveness was not affected by organic matter. Quaternary ammonium disinfectant resistance genes were not detected in the strains tested indicating that bacteria are less likely to develop resistance to these compound disinfectants. Ames test showed that there was no detectable mutagenicity in the strains treated with the compound disinfectants. In vivo experiment showed that both compound disinfectants did not have significant pathological effect in mice. The bactericidal effect of the compound disinfectants was not significantly different among strains of different sources (p&gt;0.05). Clinical tests showed that compound disinfectant had a good bactericidal effect on the air and ground of poultry farms. These results show that quaternary ammonium salts in combination with other compounds can enhance the bactericidal effect and can be used safely in poultry feedlots. This study provides a technical reference for the development of a new quaternate ammonium compound disinfectant with strong disinfection effect and low irritation.


Sign in / Sign up

Export Citation Format

Share Document