scholarly journals Supplementary material to "Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model-data fusion framework"

Author(s):  
Stephanie G. Stettz ◽  
Nicholas C. Parazoo ◽  
A. Anthony Bloom ◽  
Peter D. Blanken ◽  
David R. Bowling ◽  
...  
2014 ◽  
Vol 11 (8) ◽  
pp. 12733-12772 ◽  
Author(s):  
A. A. Bloom ◽  
M. Williams

Abstract. Many of the key processes represented in global terrestrial carbon models remain largely unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity, carbon models tend to be underdetermined, and so can produce similar net fluxes with very different parameters and internal dynamics. To address these problems, we propose a series of ecological and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range of conditions on (a) carbon pool turnover and allocation ratios, (b) steady state proximity, and (c) growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model-data fusion framework to determine the added value of these constraints in a data-poor context. Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem exchange (NEE) for (a) 40 synthetic experiments and (b) three AMERIFLUX tower sites. For the synthetic experiments, we show that EDCs lead to an an overall 34% relative error reduction in model parameters, and a 65% reduction in the 3 yr NEE 90% confidence range. In the application at AMERIFLUX sites all NEE estimates were made independently of NEE measurements. Compared to these observations, EDCs resulted in a 69–93% reduction in 3 yr cumulative NEE median biases (−0.26 to +0.08 kg C m−2), in comparison to standard 3 yr median NEE biases (−1.17 to −0.84 kg C m−2). In light of these findings, we advocate the use of EDCs in future model-data fusion analyses of the terrestrial carbon cycle.


2015 ◽  
Vol 12 (5) ◽  
pp. 1299-1315 ◽  
Author(s):  
A. A. Bloom ◽  
M. Williams

Abstract. Many of the key processes represented in global terrestrial carbon models remain largely unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity, carbon models tend to be underdetermined, and so can produce similar net fluxes with very different parameters and internal dynamics. To address these problems, we propose a series of ecological and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range of conditions on (a) carbon pool turnover and allocation ratios, (b) steady-state proximity, and (c) growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model–data fusion framework to determine the added value of these constraints in a data-poor context. Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem exchange (NEE) for (a) 40 synthetic experiments and (b) three AmeriFlux tower sites. For the synthetic experiments, we show that EDCs lead to an overall 34% relative error reduction in model parameters, and a 65% reduction in the 3 yr NEE 90% confidence range. In the application at AmeriFlux sites all NEE estimates were made independently of NEE measurements. Compared to these observations, EDCs resulted in a 69–93% reduction in 3 yr cumulative NEE median biases (–0.26 to +0.08 kg C m−2), in comparison to standard 3 yr median NEE biases (–1.17 to −0.84 kg C m−2). In light of these findings, we advocate the use of EDCs in future model–data fusion analyses of the terrestrial carbon cycle.


2021 ◽  
Author(s):  
Stephanie G. Stettz ◽  
Nicholas C. Parazoo ◽  
A. Anthony Bloom ◽  
Peter D. Blanken ◽  
David R. Bowling ◽  
...  

Abstract. The flow of carbon through terrestrial ecosystems and the response to climate is a critical but highly uncertain process in the global carbon cycle. However, with a rapidly expanding array of in situ and satellite data, there is an opportunity to improve our mechanistic understanding of the carbon (C) cycle’s response to land use and climate change. Uncertainty in temperature limitation on productivity pose a significant challenge to predicting the response of ecosystem carbon fluxes to a changing climate. Here we diagnose and quantitatively resolve environmental limitations on growing season onset of gross primary production (GPP) using nearly two decades of meteorological and C flux data (2000–2018) at a subalpine evergreen forest in Colorado USA. We implement the CARDAMOM model-data fusion network to resolve the temperature sensitivity of spring GPP. To capture a GPP temperature limitation – a critical component of integrated sensitivity of GPP to temperature – we introduced a cold temperature scaling function in CARDAMOM to regulate photosynthetic productivity. We found that GPP was gradually inhibited at temperature below 6.0 °C (±2.6 °C) and completely inhibited below −7.1 °C (±1.1 °C). The addition of this scaling factor improved the model’s ability to replicate spring GPP at interannual and decadal time scales (r = 0.88), relative to the nominal CARDAMOM configuration (r = 0.47), and improved spring GPP model predictability outside of the data assimilation training period (r = 0.88) . While cold temperature limitation has an important influence on spring GPP, it does not have a significant impact on integrated growing season GPP, revealing that other environmental controls, such as precipitation, play a more important role in annual productivity. This study highlights growing season onset temperature as a key limiting factor for spring growth in winter-dormant evergreen forests, which is critical in understanding future responses to climate change.


Author(s):  
Wen Qi ◽  
Hang Su ◽  
Ke Fan ◽  
Ziyang Chen ◽  
Jiehao Li ◽  
...  

The generous application of robot-assisted minimally invasive surgery (RAMIS) promotes human-machine interaction (HMI). Identifying various behaviors of doctors can enhance the RAMIS procedure for the redundant robot. It bridges intelligent robot control and activity recognition strategies in the operating room, including hand gestures and human activities. In this paper, to enhance identification in a dynamic situation, we propose a multimodal data fusion framework to provide multiple information for accuracy enhancement. Firstly, a multi-sensors based hardware structure is designed to capture varied data from various devices, including depth camera and smartphone. Furthermore, in different surgical tasks, the robot control mechanism can shift automatically. The experimental results evaluate the efficiency of developing the multimodal framework for RAMIS by comparing it with a single sensor system. Implementing the KUKA LWR4+ in a surgical robot environment indicates that the surgical robot systems can work with medical staff in the future.


2017 ◽  
Vol 14 (14) ◽  
pp. 3487-3508 ◽  
Author(s):  
Tobias Houska ◽  
David Kraus ◽  
Ralf Kiese ◽  
Lutz Breuer

Abstract. This study presents the results of a combined measurement and modelling strategy to analyse N2O and CO2 emissions from adjacent arable land, forest and grassland sites in Hesse, Germany. The measured emissions reveal seasonal patterns and management effects, including fertilizer application, tillage, harvest and grazing. The measured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha−1 a−1, and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha−1 a−1 for the arable land, grassland and forest sites, respectively. An innovative model–data fusion concept based on a multicriteria evaluation (soil moisture at different depths, yield, CO2 and N2O emissions) is used to rigorously test the LandscapeDNDC biogeochemical model. The model is run in a Latin-hypercube-based uncertainty analysis framework to constrain model parameter uncertainty and derive behavioural model runs. The results indicate that the model is generally capable of predicting trace gas emissions, as evaluated with RMSE as the objective function. The model shows a reasonable performance in simulating the ecosystem C and N balances. The model–data fusion concept helps to detect remaining model errors, such as missing (e.g. freeze–thaw cycling) or incomplete model processes (e.g. respiration rates after harvest). This concept further elucidates the identification of missing model input sources (e.g. the uptake of N through shallow groundwater on grassland during the vegetation period) and uncertainty in the measured validation data (e.g. forest N2O emissions in winter months). Guidance is provided to improve the model structure and field measurements to further advance landscape-scale model predictions.


2018 ◽  
Author(s):  
Yating Lin ◽  
Gilles Ramstein ◽  
Haibin Wu ◽  
Raj Rani ◽  
Pascale Braconnot ◽  
...  

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Brenda Rashleigh ◽  
Thomas Nicholson

Interagency Collaborative for Environmental Modeling and Monitoring: Monitoring and Model Data Fusion; Rockville, Maryland, 24–25 April 2018


2021 ◽  
Author(s):  
Zhuo Yang ◽  
Yan Lu ◽  
Simin Li ◽  
Jennifer Li ◽  
Yande Ndiaye ◽  
...  

Abstract To accelerate the adoption of Metal Additive Manufacturing (MAM) for production, an understanding of MAM process-structure-property (PSP) relationships is indispensable for quality control. A multitude of physical phenomena involved in MAM necessitates the use of multi-modal and in-process sensing techniques to model, monitor and control the process. The data generated from these sensors and process actuators are fused in various ways to advance our understanding of the process and to estimate both process status and part-in-progress states. This paper presents a hierarchical in-process data fusion framework for MAM, consisting of pointwise, trackwise, layerwise and partwise data analytics. Data fusion can be performed at raw data, feature, decision or mixed levels. The multi-scale data fusion framework is illustrated in detail using a laser powder bed fusion process for anomaly detection, material defect isolation, and part quality prediction. The multi-scale data fusion can be generally applied and integrated with real-time MAM process control, near-real-time layerwise repairing and buildwise decision making. The framework can be utilized by the AM research and standards community to rapidly develop and deploy interoperable tools and standards to analyze, process and exploit two or more different types of AM data. Common engineering standards for AM data fusion systems will dramatically improve the ability to detect, identify and locate part flaws, and then derive optimal policies for process control.


Sign in / Sign up

Export Citation Format

Share Document