scholarly journals Supplementary material to "Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides"

Author(s):  
Uri Obolski ◽  
Thomas Wichard ◽  
Alvaro Israel ◽  
Alexander Golberg ◽  
Alexander Liberzon
2021 ◽  
Author(s):  
Uri Obolski ◽  
Thomas Wichard ◽  
Alvaro Israel ◽  
Alexander Golberg ◽  
Alexander Liberzon

Abstract. Ulva is a widespread green algal genus with important ecological roles and promising potential as a seagriculture crop. One of the major challenges when cultivating Ulva is sudden biomass disappearance, likely caused by uncontrolled and unpredicted massive sporulation. However, the dynamics of this process are still poorly understood. In this study, we propose a mathematical model describing the biomass accumulation and degradation of Ulva, considering the potential impact of sporulation inhibitors. We developed a differential equation model describing the time evolution of Ulva biomass. Our model simulates biomass in compartments of different Ulva ‘age’ classes, with varying growth and sporulation rates. Coupled with these classes is a differential equation describing the presence of a sporulation inhibitor, produced and secreted by the algae. Our model mimics observed Ulva dynamics. We present Ulva's biomass accumulation under different initial algae population age distributions and sporulation rates. Furthermore, we simulate water replacement, effectively depleting the sporulation inhibitor, and examine its effects on Ulva's biomass accumulation. The model developed in this work is the first step towards understanding the dynamics of Ulva growth and degradation. Future work refining and expanding our results should prove beneficial to the ecological research and industrial growth of Ulva.


2020 ◽  
Vol 35 (7) ◽  
pp. 963-973
Author(s):  
Summer R. Whillock ◽  
Michelle L. Meade ◽  
Keith A. Hutchison ◽  
Megan D. Tsosie

Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Sign in / Sign up

Export Citation Format

Share Document