Supplementary material to "Temporal dynamics of tree xylem water isotopes: In-situ monitoring and modelling"

Author(s):  
Stefan Seeger ◽  
Markus Weiler
2021 ◽  
Author(s):  
Stefan Seeger ◽  
Markus Weiler

Abstract. We developed a setup for a fully automated, high frequency in-situ monitoring system of the stable water isotopes Deuterium and 18O in soil water and tree xylem. The setup was tested for 12 weeks within an isotopic labelling experiment during a large artificial sprinkling experiment including three mature European beech (Fagus sylvatica) trees. Our setup allowed for one measurement every 12–20 minutes, enabling us to obtain about seven measurements per day for each of our 15 in-situ probes in the soil and tree xylem. While the labelling induced an abrupt step pulse in the soil water isotopic signature, it took seven to ten days until the isotopic signatures at the trees' stem bases reached their peak label concentrations and it took about 14 days until the isotopic signatures at 8 m stem height levelled off around the same values. During the experiment, we observed the effects of several rain events and dry periods on the xylem water isotopic signatures, which fluctuated between the measured isotopic signatures observed in the upper and lower soil horizons. In order to explain our observations, we combined an already existing root water uptake (RWU) model with a newly developed approach to simulate the propagation of isotopic signatures from the root tips to the stem base and further up along the stem. The key to a proper simulation of the observed short term dynamics of xylem water isotopes, was accounting for sap flow velocities and the flow path length distribution within the root and stem xylem. Our modelling framework allowed us to identify parameter values that relate to root depth, horizontal root distribution and wilting point. The insights gained from this study can help to improve the representation of stable water isotopes in trees within ecohydrological models and the prediction of transit time distribution and water age of transpiration fluxes.


2021 ◽  
Vol 18 (15) ◽  
pp. 4603-4627
Author(s):  
Stefan Seeger ◽  
Markus Weiler

Abstract. We developed a setup for a fully automated, high-frequency in situ monitoring system of the stable water isotope deuterium and 18O in soil water and tree xylem. The setup was tested for 12 weeks within an isotopic labeling experiment during a large artificial sprinkling experiment including three mature European beech (Fagus sylvatica) trees. Our setup allowed for one measurement every 12–20 min, enabling us to obtain about seven measurements per day for each of our 15 in situ probes in the soil and tree xylem. While the labeling induced an abrupt step pulse in the soil water isotopic signature, it took 7 to 10 d until the isotopic signatures at the trees' stem bases reached their peak label concentrations and it took about 14 d until the isotopic signatures at 8 m stem height leveled off around the same values. During the experiment, we observed the effects of several rain events and dry periods on the xylem water isotopic signatures, which fluctuated between the measured isotopic signatures observed in the upper and lower soil horizons. In order to explain our observations, we combined an already existing root water uptake (RWU) model with a newly developed approach to simulate the propagation of isotopic signatures from the root tips to the stem base and further up along the stem. The key to a proper simulation of the observed short-term dynamics of xylem water isotopes was accounting for sap flow velocities and the flow path length distribution within the root and stem xylem. Our modeling framework allowed us to identify parameter values that relate to root depth, horizontal root distribution and wilting point. The insights gained from this study can help to improve the representation of stable water isotopes in trees within ecohydrological models and the prediction of transit time distribution and water age of transpiration fluxes.


2021 ◽  
Author(s):  
Kamel Soudani ◽  
Nicolas Delpierre ◽  
Daniel Berveiller ◽  
Gabriel Hmimina ◽  
Gaëlle Vincent ◽  
...  

AbstractAnnual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1 A and B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological markers of the start, middle and end of budburst and leaf expansion stage in spring and the leaf senescence in autumn were extracted from time-series of the ratio (VV/VH) of backscattering at co-polarization VV (vertical-vertical) and at cross polarization VH (vertical-horizontal). These markers were compared to field phenological observations, and to phenological dates derived from various proxies (Normalized Difference Vegetation Index NDVI time-series from Sentinel-2 A and B images, in situ NDVI measurements, Leaf Area Index LAI and litterfall temporal dynamics). We observe a decrease in the backscattering coefficient (σ0) at VH cross polarization during the leaf development and expansion phase in spring and an increase during the senescence phase, contrary to what is usually observed on various types of crops. In vertical polarization, σ0VV shows very little variation throughout the year. S-1 time series of VV/VH ratio provides a good description of the seasonal vegetation cycle allowing the estimation of spring and autumn phenological markers. Estimates provided by VV/VH of budburst dates differ by approximately 8 days on average from phenological observations. During senescence phase, estimates are positively shifted (later) and deviate by about 20 days from phenological observations of leaf senescence while the differences are of the order of 2 to 4 days between the phenological observations and estimates based on in situ NDVI and LAI time-series, respectively. A deviation of about 7 days, comparable to that observed during budburst, is obtained between the estimates of senescence from S-1 and those determined from the in situ monitoring of litterfall. While in spring, leaf emergence and expansion described by LAI or NDVI explains the increase of VV/VH (or the decrease of σ0VH), during senescence, S-1 VV/VH is decorrelated from LAI or NDVI and is better explained by litterfall temporal dynamics. This behavior resulted in a hysteresis phenomenon observed on the relationships between VV/VH and NDVI or LAI. For the same LAI or NDVI, the response of VV/VH is different depending on the phenological phase considered. This study shows the high potential offered by Sentinel-1 SAR C-band time series for the detection of forest phenology for the first time, thus overcoming the limitations caused by cloud cover in optical remote sensing of vegetation phenology.HighlightsWe study S-1 C-band dual polarized data potential to predict forest phenologySeasonal phenological transitions were accurately described by S-1 time-seriesBudburst and senescence dates from S-1 differ from direct observations by one weekTime-series of S-1 VV/VH, NDVI, LAI and litterfall were also comparedRelationships VV/VH vs NDVI and LAI show a hysteresis according to the season


2021 ◽  
Author(s):  
Jessica Landgraf ◽  
Dörthe Tetzlaff ◽  
Maren Dubbert ◽  
David Dubbert ◽  
Aaron Smith ◽  
...  

Abstract. Root water uptake is an important critical zone process, as plants can tap various water sources and transpire these back into the atmosphere. However, knowledge about the spatial and temporal dynamics of root water uptake and associated water sources at both high temporal resolution (e.g. daily) and over longer time periods (e.g. seasonal) is still limited. We used cavity ring-down spectroscopy (CRDS) for continuous in situ monitoring of stable water isotopes in soil and xylem water for two riparian willow (Salix alba) trees over the growing season (May to October) of 2020. This was complemented by isotopic sampling of local precipitation, groundwater and stream water in order to help constrain the potential sources of root water uptake. A local flux tower, together with sap flow monitoring, soil moisture measurements and dendrometry were also used to provide the hydroclimatic and ecohydrological contexts for in situ isotope monitoring. In addition, bulk samples of soil water and xylem water were collected to corroborate the continuous in situ data. The monitoring period was characterised by frequent inputs of precipitation, interspersed by warm dry periods which resulted in variable moisture storage in the upper 20 cm of the soil profile and dynamic isotope signatures. This variability was greatly damped in 40 cm and the isotopic composition of the sub-soil and groundwater was relatively stable. The isotopic composition and dynamics of xylem water was very similar to that of the upper soil and analysis using a Bayesian mixing model inferred that overall ~90 % of root water uptake was derived from the upper soil profile. Sap flow and dendrometry data indicated that soil water availability did not seriously limit transpiration during the study period, though there was a suggestion that deeper (> 40 cm) soil water might provide a higher proportion of root water uptake (~30 %) in a drier period in the late summer. The study demonstrates the utility of prolonged real time monitoring of natural stable isotope abundance in soil-vegetation systems, which has great potential for further understanding of ecohydrological partitioning under changing hydroclimatic conditions.


Sign in / Sign up

Export Citation Format

Share Document